
James Coleman (PGConf.NYC 2022)

HACKING ON POSTGRES
AN OVERVIEW

About Me

• Architect for Data Engineering at Braintree Payments

• Not the most senior hacker in the room (unless poorly attended!), but…I’ve
authored patches in Postgres versions 12-15, including:

• Incremental sort

• Multiple improvements to ScalarArrayOpExpr ([NOT]IN, = ANY/ALL)
optimization and execution.

Presentation Note

• Many slides include footnote references to a number of links and file paths.

• The slides are already available as a PDF download on the conference
website.

Other Talks in this Genre
Further material that complements this talk

• Hacking on Postgres (Stephen Frost) [1]

• Intro to Postgres Planner Hacking (Melanie Plageman) [2]

• How to be a Happy Hacker (Andrew Dunstan) [3]

• Other resources listed on the Wiki [4]

1.https://www.postgresql.eu/events/pgconfeu2018/sessions/session/2058/slides/96/hackingpg-present.pdf

2.https://www.pgcon.org/2019/schedule/events/1379.en.html

3.https://www.youtube.com/watch?v=yFDyM29tB6k

4.https://wiki.postgresql.org/wiki/So,_you_want_to_be_a_developer%3F#Hacking_PostgreSQL_Resources

https://www.postgresql.eu/events/pgconfeu2018/sessions/session/2058/slides/96/hackingpg-present.pdf
https://www.pgcon.org/2019/schedule/events/1379.en.html
https://www.youtube.com/watch?v=yFDyM29tB6k
https://wiki.postgresql.org/wiki/So,_you_want_to_be_a_developer%3F#Hacking_PostgreSQL_Resources

What about this talk?

- Braintree colleague

“I would love to see more talks about mechanics
of working on the PG codebase…e.g. how to
set up a feedback cycle, navigate in vim, etc.”

- Braintree colleague

“That is an under-appreciated superpower of Ruby development
here…bootstrap your env, run focused tests from vimux…rinse,
repeat…It'd be really cool to develop a ‘standard’ way of
working with Postgres in vim, vscode, or whatever.”

Roadmap
Focus on mechanics of hacking on Postgres

Three broad categories:

• Community process

• Codebase

• Development tooling

Community Process

Mailing list, patch submission and review, and CommitFests

Mailing lists

• Development happens publicly on the pgsql-hackers [1] mailing list.

• Some might also start on the pgsql-bugs [2] mailing list.

• Discussions can span multiple years and 100s of messages (this is why e.g.
GitHub Pull Requests wouldn’t work).

• Don’t get discouraged if a discussion takes a long time!

• Many patches and ideas are rejected early.

1.https://www.postgresql.org/list/pgsql-hackers/

2.https://www.postgresql.org/list/pgsql-bugs/

https://www.postgresql.org/list/pgsql-hackers/
https://www.postgresql.org/list/pgsql-bugs/

Mailing lists

• Don’t top-post (use inline reply/interleave posting style)

• Use plain text

• Reply-all to the proper point in the thread tree

Mailing lists
• I recommend subscribing to the list now to ensure you get all of the

messages (including parts of a discussion tree you weren’t cc’d on), and it’s
easy to reply.

• Hint: setup a filter to send all the messages into a specific folder or label.

Mailing lists
• If you really don’t want a firehose of emails, it’s now possible (while logged in)

to Resend a single message (to which you can then reply).

• You can also subscribe without receiving email (this allows sent emails to
bypass moderation).

Getting Involved
Start by reviewing patches

• Does the use case make sense?

• Will the proposed change have unintended consequences?

• Does the change work?

• Does the patch follow code style?

• Is it understandable and maintainable?

Getting Involved
Submitting a patch

• First search for prior art and discussion

• If the same approach has been tried before and rejected explain how your patch
is different (or reconsider submitting at all)

• Explain the use case you’re addressing

• Sample queries and data are often helpful

• Show evidence of performance improvement (if applicable)

• Don’t make unrelated changes

• For every patch you submit you should review a similarly sized patch.

CommitFests

• Development is organized into alternating cycles of development and review.

• After the March CommitFest (at which point a release branch is generally
cut) there’s usually a multi-month break.

• Each CommitFest is a ~1 month period where new development is paused
and contributors review existing patches.

• New patches submitted during a CommitFest will likely be ignored while the
CommitFest (review cycle) is active.

• A volunteer CommitFest manager ensures patches in the current cycle are
tracked with the right status.

CommitFests

• The CommitFest (or colloquially
“CF”) application [1] tracks
patch and CommitFest status.

• New patches are added to the
“Open” CommitFest.

• The “In Progress” CommitFest
contains the patches currently
being reviewed.

1.https://commitfest.postgresql.org

https://commitfest.postgresql.org

CommitFests
Reviewing a patch

You can simply look at recent
emails and respond to one you
find interesting, or you can look
for “Needs Review” patches in the
CF app.

CommitFests
Reviewing a patch

Either way, if you review a patch
you can Edit the patch record in
the CF app and record yourself as
a reviewer.

CommitFests
Adding a new patch

• After sending your email to the
mailing list, click “New Patch” in
the Open CommitFest.

• Find and attach your message
thread (“Find thread” shows the
most recent mailing list
messages and allows search).

Other Resources

• PostgreSQL Wiki — Development information [1]

• Developer meeting notes

• Unofficial TODO lists and roadmaps

• Patch FAQs and checklists

• Editor and tooling information

1.https://wiki.postgresql.org/wiki/Development_information

https://wiki.postgresql.org/wiki/Development_information

Codebase

Directory Layout

• contrib/ - Source for tools, utilities, and extensions that aren’t part of the
core installation but are nonetheless maintained as part of the main source
tree

• docs/ - SGML source for public documentation

• src/ - Source for core installation (including tests)

Directory Layout
Core source

• Not going to list everything here (see Stephen Frost’s talk, linked earlier, for a
more in-depth listing), but a few highlights:

• src/backend/ - server side of Postgres (*.c)

• src/include/ - server side of Postgres (*.h)

• src/bin/ - front-end tools for Postgres (psql, pg_* command line
executables, etc.)

• src/test/ - regression tests

Backend Structure
What component are you working on?

• E.g., query execution includes:

• Parser

• Optimizer

• Executor

• The Postgres source is fairly well organized; each subsystem or component
generally has a directory.

Backend Structure
How do the components fit together?

• Backend flow chart is in the docs [1]

• Bruce Momjian has a talk “PostgreSQL
Internals Through Pictures” referencing
this also (and more) [2]

• The Internals of PostgreSQL (online book) [3]

1.https://www.postgresql.org/developer/backend/

2.https://momjian.us/main/presentations/internals.html

3.https://www.interdb.jp/pg/

https://www.postgresql.org/developer/backend/
https://momjian.us/main/presentations/internals.html
https://www.interdb.jp/pg/

Understanding the Source
README files

• The Postgres source contains a
significant number of helpful in-
tree documents as README
files.

• For example, see the long doc at
src/backend/optimizer/README
that includes data structure
information, information on valid
JOIN tree construction, and plan
generation.

Understanding the Source
Comments

• The Postgres source is heavily
commented.

• Your code should generally
include comment headers for
each function.

• Inline to code you should explain
reasoning for why assumptions
hold true, what you’re trying to
accomplish, etc.

Style

• Use proper project style to avoid unnecessary frustration with your patch! [1]

• Tabs, not spaces, displayed as 4 columns per tab stop.

• Use a new line for opening braces; no braces around single statements.

• 80 character column limit.

• Be sure to follow the style of the surrounding code:

• E.g., there are unfortunately lots of different variable naming styles (camel-
case, underscores, etc.); match the context as much as possible.

1.https://www.postgresql.org/docs/devel/source-format.html

Docs

• The docs/ top level directory contains the SGML/XML source for public
documentation.

• The markup uses DocBook [1].

• Note: DocBook source formatting style differs from the C source code.

• Single space indenting.

1.https://www.postgresql.org/docs/current/docguide-docbook.html

https://www.postgresql.org/docs/current/docguide-docbook.html

Built-in Facilities

Memory Management
Memory Contexts

• Postgres tracks memory usage as part of nested memory contexts.

• TopMemoryContext exists for the lifetime of a backend

• New contexts are created for each query, operations within a query (e.g., a
sort), sometimes per tuple, etc.

• CurrentMemoryContext is used for new allocations.

Memory Management
Managing Contexts

• There are multiple memory allocators available:

• AllocSet [1] is the standard allocator; maintains free lists in larger blocks of
memory.

• Generation [2] is useful for limiting underlying malloc/free calls when
memory is chunks are used in a roughly FIFO manner (e.g., a queue).

• Slab [3] is useful when “large numbers of equally-sized objects are
allocated (and freed).”

1.src/backend/utils/mmgr/aset.c

2.src/backend/utils/mmgr/generation.c

3.src/backend/utils/mmgr/slab.c

Memory Management
Managing Contexts

• (If needed) create a new context with 
{AllocSet,Generation,Slab}ContextCreate(…)

• Switch contexts with MemoryContextSwitchTo(context); make sure to
switch back. Common pattern looks like: 
 
 MemoryContext oldcxt;
 oldcxt = MemoryContextSwitchTo(some_cxt);

 <do work>

 MemoryContextSwitchTo(oldcxt);

Memory Management
Managing Allocations

• palloc(Size size)

• palloc0(Size size)

• palloc_extended(Size size, int flags)

• repalloc(void *pointer, Size size)

• pfree(void *pointer)

• Note: sometimes you won’t need to explicitly free memory because the
entire context’s allocations are cleaned up with MemoryContextReset or
MemoryContextDelete (and friends).

src/include/utils/palloc.h

Logging and Error Handling

• Both are handled through the same infrastructure: 
 
ereport(<level>
 errcode(ERRCODE_…), # Optional
 errmsg(…),
 …) # Optional fields; e.g. errdetail(…) and errhint(…)

src/include/utils/elog.h

Logging and Error Handling
Log levels (non-error case)

• DEBUG{5,4,3,2,1}

• LOG: Operational messages sent to server log by default.

• INFO: Explicitly requested by user (e.g., VERBOSE); sent to client and not
server log by default.

• NOTICE: User-targeted helpful, expected messages; sent to client and not
server log by default.

• WARNING: Like NOTICE, but unexpected messages.

src/include/utils/elog.h

Logging and Error Handling
Log levels (error case)

• ERROR:

• Abort current transaction.

• Doesn’t return to caller.

• Cleans up memory, etc.

• FATAL: Abort current process.

• PANIC: Shutdown everything.

src/include/utils/elog.h

Data Structures
Lists

• List [1]: simple, expansible array implementation; empty list is NIL

• slist_head, dlist_head [2]: Single and doubly linked lists.

1.src/include/nodes/pg_list.h

2.src/include/lib/ilist.h

Data Structures
Hashtables

• Simplehash [1]

• Templated (by way of macros) specialized implementations for user types (improves
speed and memory usage at cost of complex setup and increased binary size)

• Open-addressing (good for CPU cache behavior)

• Dynahash [2] chained hashtable

• Shared memory (fixed size at startup) or backend-local.

• Partionable (improves shared memory access locking performance)

• Guarantees stable pointers (hash conflicts don’t result in moving entries, thus more
performant for large keys)

1.src/include/lib/simplehash.h

2.src/backend/utils/hash/dynahash.c

Data Structures
Hashtables

• dshash_hash [1]

• Concurrent

• Dynamic shared memory

1.src/include/lib/dshash.h

Data Structures
Other

• binaryheap [1]: full/balanced binary tree

• Bitmapset [2]: set of non-negative integers (usually max value is low)

• bloom_filter [3]: Space-efficient set membership testing

• IntegerSet [4]: efficient large integer set; uses a B-tree internally with nearby
values stored in a packed representation

1.src/include/lib/binaryheap.h

2.src/include/nodes/bitmapset.h

3.src/include/lib/bloomfilter.h

4.src/include/lib/integerset.h, src/backend/lib/integerset.c

Data Structures
Other

• pairingheap [1]

• RBTree [2]

• StringInfo [3]: Extensible string buffer type (up to 1GB)

1.src/include/lib/pairingheap.h

2.src/include/lib/rbtree.h

3.src/include/lib/stringinfo.h

Algorithms

• Binary search: implemented inline in several places

• Bipartite matching [1]

• HyperLogLog [2]: cardinality (unique values) estimation

• Knapsack [3]

• Uniquing arrays [4]

• Templated (macros) sorting implementations [5]
1.src/include/lib/bipartite_match.h

2.src/include/lib/hyperloglog.h

3.src/include/lib/knapsack.h, src/backend/lib/knapsack.c

4.src/include/lib/qunique.h

5.src/include/lib/sort_template.h

GUCs (Grand Unified Configuration)
Runtime configuration

• Configured in conf files or set at runtime with the familiar SET <config_name>
… syntax.

• Whether runtime configuration is needed permanently for your feature is
necessary or not adding a GUC is often useful during development to switch
a feature on/off without rebuilding.

• Can have default and upper and lower bounds (if applicable).

• Optional hooks for showing, setting, and checking valid values.

GUCs (Grand Unified Configuration)
Adding a new GUC (simplified)

• Declare a global variable (bool, int, double, or char*) in your file.

• Add an entry to the appropriate ConfigureNames{Bool,Int,Real,String}
table in src/backend/utils/misc/guc_tables.c.

• For more details, see the “TO ADD AN OPTION” section in 
src/backend/utils/misc/guc_tables.c.

Tooling

Working on a patch

Environment
Editor, etc.

• I’m going to use my preferred setup [1] in the following demo.

• Vim: for editing

• Tmux: working in a terminal with multiple windows and panes

• Some custom scripting [2]

• My setup isn’t the only way (but if you’re using emacs…you’re wrong 😜).

• Sample editor configuration files can be found in-tree at src/tools/editors/
1.https://github.com/jcoleman/machine-setup

2.https://github.com/jcoleman/postgres-dev-tools

https://github.com/jcoleman/machine-setup
https://github.com/jcoleman/postgres-dev-tools

Terminal Demo
Applying a patch, building, and debugging

Debugging

• elog(WARNING, “…”) for good old fashioned print debugging (and it goes to
the client if you’re working in query execution!)

• If you encounter a segfault or other crash be sure you’ve rebuilt (cleanly) and
re-initialized your data directory since your last pull/rebase.

• gdb or lldb for an interactive debugger.

• rr [1] can “record” execution runs for replay.

1.https://wiki.postgresql.org/wiki/Getting_a_stack_trace_of_a_running_PostgreSQL_backend_on_Linux/BSD#Recording_Postgres_using_rr_Record_and_Replay_Framework

Testing
Running the tests

• Run core regression tests with make check

• Can run against local install with make installcheck

• Run all tests with make check-world

• Can run against local install with make installcheck-world

1.https://www.postgresql.org/docs/current/regress-run.html

https://www.postgresql.org/docs/current/regress-run.html

Testing
Regression tests

• Found in src/test/regress/{sql,expected,results}/

• Consist of SQL files containing “tests” and the expected output from running
those files with psql

• Logs found in src/test/regress/log/postmaster.log

• Not isolated/may reference previous files (can make pulling a test out difficult)

• Default to parallel groups; can run serially by setting MAX_CONNECTIONS=1

1.https://www.postgresql.org/docs/current/regress.html

2.https://wiki.postgresql.org/wiki/Regression_test_authoring

https://www.postgresql.org/docs/current/regress.html
https://wiki.postgresql.org/wiki/Regression_test_authoring

Testing
TAP tests

• Found in *.pl files in a t/ subdirectories (e.g., of the source for various
binaries like src/bin/pg_rewind/t/)

• Run individual test files (while in e.g. src/bin/pg_rewind/) with 
make check PROVE_TESTS=t/010_no_checkpoint_after_promotion.pl

• Logs found in tmp_check/log subdirectory

1.https://www.postgresql.org/docs/current/regress-tap.html

2.https://pgtap.org

http://010_no_checkpoint_after_promotion.pl
https://www.postgresql.org/docs/current/regress-tap.html
https://pgtap.org

Testing
CI

• Official repository is tested by the “buildfarm” made up of many user-run
machines referred to as “animals” (each with a fun name to boot).

• You can configure CirrusCI on your personal fork of the repo on GitHub:

• Supports various platforms so you can test against system types you don’t
have personal access to/different from your development environment.

• See src/tools/ci/README for details.

Submitting a Patch

• Break your change into a coherent set of patches (if necessary); for example:

• You might have a precursor patch that is a clean refactor and then a second patch to
make your actual change.

• You might have a second patch that’s useful for debugging (e.g., adding GUCs you
won’t actually want to keep around).

• Write message for mailing list (and commit messages) including:

• Motivation for change

• How the change works

• What you expect the outcome to be

Submitting a Patch

• Ensure code is formatted properly:

• pgindent [1] (found in source tree) is the canonical tool for formatting
source.

•Requires some tools to be installed; more information found at [2]

• Patch filenames should include the version of the patch and (if multiple files)
the index of the patch in the patch series.

• git format-patch -v<n> master

1.https://github.com/postgres/postgres/tree/master/src/tools/pgindent

2.https://www.interdb.jp/blog/pgsql/pgindent/

https://github.com/postgres/postgres/tree/master/src/tools/pgindent
https://www.interdb.jp/blog/pgsql/pgindent/

Q/A

