HACKING ON POSTGRES

James Coleman (PGConf.NYC 2022)

About Me

» Architect for Data Engineering at Braintree Payments

* Not the most senior hacker in the room (unless poorly attended!), but...I’'ve
authored patches in Postgres versions 12-195, including:

e |ncremental sort

 Multiple improvements to ScalarArrayOpExpr ([NOT]IN, = ANY/ALL)
optimization and execution.

Presentation Note

 Many slides include footnote references to a number of links and file paths.

* The slides are already available as a PDF download on the conference
website.

Other Talks in this Genre

Further material that complements this talk

 Hacking on Postgres (Stephen Frost) [1]
* |Intro to Postgres Planner Hacking (Melanie Plageman) [2]
 How to be a Happy Hacker (Andrew Dunstan) [3]

e Other resources listed on the Wiki [4]

1.https://www.postgresqgl.eu/events/pgconfeu2018/sessions/session/2058/slides/96/hackingpg-present.pdf
2.https://www.pgcon.org/2019/schedule/events/1379.en.html
3.https://www.youtube.com/watch?v=yFDyM29tB6k

4.https://wiki.postgresql.org/wiki/So, you want to be a developer®%3F#Hacking PostgreSQL Resources

https://www.postgresql.eu/events/pgconfeu2018/sessions/session/2058/slides/96/hackingpg-present.pdf
https://www.pgcon.org/2019/schedule/events/1379.en.html
https://www.youtube.com/watch?v=yFDyM29tB6k
https://wiki.postgresql.org/wiki/So,_you_want_to_be_a_developer%3F#Hacking_PostgreSQL_Resources

What about this talk?

“l would love to see more talks about mechanics
of working on the PG codebase...e.g. how to
set up a feedback cycle, navigate in vim, etc.”

- Braintree colleague

“That Is an under-appreciated superpower of Ruby development
here...bootstrap your eny, run focused tests from vimux...rinse,
repeat...lt'd be really cool to develop a ‘standard’ way of
working with Postgres in vim, vscode, or whatever.”

- Braintree colleague

Roadmap

Focus on mechanics of hacking on Postgres

Three broad categories:
« Community process
 Codebase

* Development tooling

Community Process

Mailing list, patch submission and review, and CommitFests

Mailing lists

* Development happens publicly on the pgsqgl-hackers [1] mailing list.
 Some might also start on the pgsqgl-bugs [2] mailing list.

* Discussions can span multiple years and 100s of messages (this is why e.q.
GitHub Pull Requests wouldn’t work).

 Don’t get discouraged if a discussion takes a long time!

 Many patches and ideas are rejected early.

1.https://www.postgresqgl.org/list/pgsql-hackers/
2.https://www.postgresaql.org/list/pgsqgl-bugs/

https://www.postgresql.org/list/pgsql-hackers/
https://www.postgresql.org/list/pgsql-bugs/

Mailing lists

 Don’t top-post (use inline reply/interleave posting style)
 Use plain text

* Reply-all to the proper point in the thread tree

Mailing lists

* | recommend subscribing to the list now to ensure you get all of the
messages (including parts of a discussion tree you weren’t cc’d on), and it’s
easy to reply.

* Hint: setup a filter to send all the messages into a specific folder or label.

Matches: list:(<pgsqgl-hackers.lists.postgresql.org>) -{jtc331@gmail.com}
Do this: Skip Inbox, Apply label "PG Hackers", Never send it to Spam

Matches: list:<pgsql-hackers.lists.postgresqgl.org> jtc331@gmail.com
Do this: Apply label "PG Hackers", Never send it to Spam, Mark it as important

Matches: to:(pgsql-hackers@postgresql.org jtc331@gmail.com)
Do this: Apply label "PG Hackers", Never send it to Spam, Mark it as important

Mailing lists

* |f you really don’t want a firehose of emails, it’'s now possible (while logged in)
to Resend a single message (to which you can then reply).

* You can also subscribe without receiving email (this allows sent emails to
bypass moderation).

Re: Reducing the chunk header sizes on all memory context types

From: Tomas Vondra <tomas(dot)vondra(at)enterprisedb(dot)com>
To: David Rowley <dgrowleymi(at)gmail(dot)com>
Ce: Tom Lane <tgl(at)sss(dot)pgh(dot)pa(dot)us>, Amit Kapila <amit(dot)kapilal6(at)gmail(dot)com>, Andres Freund <andres(at)anarazel(dot)de>, Robert Haas
' <robertmhaas(at)gmail(dot)com>, Yura Sokolov <y(dot)sokolov(at)postgrespro(dot)ru>, PostgreSQL Developers <pgsql-hackers(at)lists(dot)postgresql(dot)org>
Subject: Re: Reducing the chunk header sizes on all memory context types
Date: 2022-09-01 00:12:20
Message-ID: a6ab9367-bcf4-116a-39b7-c9b1afbe8cfc@enterpr .eab.com
Views: Raw Message | Whole Thread | Download mbo ' | Resend email
Thread: 2022-09-01 00:12:20 from Tomas ._~"r= ~t~=_;dot)vondra(at)enterprisedb(dot)com>

Lists: pgsql-hackers

Getting Involved

Start by reviewing patches

* Does the use case make sense?

* Will the proposed change have unintended consequences?
* Does the change work?

* Does the patch follow code style?

e |s |t understandable and maintainable?

Getting Involved
Submitting a patch

* First search for prior art and discussion

* |f the same approach has been tried before and rejected explain how your patch
is different (or reconsider submitting at all)

* Explain the use case you’re addressing

« Sample queries and data are often helpful

 Show evidence of performance improvement (if applicable)
 Don’t make unrelated changes

* For every patch you submit you should review a similarly sized patch.

CommitFests

 Development is organized into alternating cycles of development and review.

o After the March CommitFest (at which point a release branch is generally
cut) there’s usually a multi-month break.

« Fach CommitFest is a ~1 month period where new development is paused
and contributors review existing patches.

 New patches submitted during a CommitFest will likely be ignored while the
CommitFest (review cycle) is active.

* A volunteer CommitFest manager ensures patches in the current cycle are
tracked with the right status.

CommitFests

 The CommitFest (or colloquially
“CF”) application [1] tracks
patch and CommitFest status.

 New patches are added to the
“Open” CommitFest.

* The “In Progress” CommitFest
contains the patches currently
being reviewed.

1.https://commitfest.postgresql.org

eoe [J v (<
™M
Commitfests

The following commitfests exist in the system. Current review work is done in commitfest 2022-09. New patches should be

submitted to commitfest 2022-11.

e 2022-03 (Closed -
e 2022-0
e 2021-1
e 2021-09 (Closed -
e 2021-07 (Closed -
e 2021-03 (Closed -
e 2021-0
e 2020-1
e 2020-09 (Closed -
e 2020-07 (Closed -
e 2020-03 (Closed -
e 2020-0
e 2019-1
e 2019-09 (Closed -
e 2019-07 (Closed -

e 2019-03 (Closed -
a _2N010.N1 (Clonecer -

1
1
I
1

(
(
(
(
(
(
(
(
(
(
(
(
(
(
I(
I
(
(

Closed -
Closed -

Closed -
Closed -

Closed -
Closed -

2022-07-01
2022-03-01
2022-01-01
2021-11-01
2021-09-01
2021-07-01
2021-03-01
2021-01-01
2020-11-01
2020-09-01
2020-07-01
2020-03-01
2020-01-01
2019-11-01
2019-09-01
2019-07-01

2019-03-01
2019.01.01

)

.@.

e 2023-01 (Future - 2023-01-01 - 2023-01-31)
e 2022-11 (Open - 2022-11-01 - 2022-11-30)
e 2022-09 (In Progress - 2022-09-01 - 2022-09-30)
e 2022-07 (Closed -

- 2022-07-31)
- 2022-03-31
- 2022-01-31
- 2021-11-30
- 2021-09-30
- 2021-07-31
- 2021-03-31
- 2021-01-31

- 2020-11-30

- 2020-07-31
- 2020-03-31
- 2020-01-31
- 2019-11-30
- 2019-09-30
- 2019-07-31
- 2019-03-31

)
)
)
)
)
)
)
)
- 2020-09-30)
)
)
)
)
)
)
)

2019.N01.31)

commitfest.postgresqgl.org

EF Commitfests

Activity log

+

Log in

-l

https://commitfest.postgresql.org

CommitFests

Reviewing a patch

,_—.
I
—
J

O O ED v < [j .@. commitfest.postgresqgl.org € d] -+

M & commitfest 2022-11

You can simply look at recent ome / Gommitest 202 Activty g / Logged
emails and respond to one you Commitfest 2022-11

find interesting, or you can look
for “Needs Review” patches in the
CF app.

Search/filter Shortcuts ~ New patch

Status summary: Needs review: 6. Waiting on Author: 4. Total: 10.

Active patches

Num Latest Late:

Patch 4 Status Ver Author Reviewers Committer cfs activity mail
Bug Fixes
Issue in GIN fast- Needs review Matthias van de 1 2022-09-08 2022
insert: Meent 11:09 11:0:
XLogBegininsert + (mmeent)
Read/LockBuffer
ordering
Clients
Add LZ4 compression Georgios Justin Pryzby 4 2022-09-08 2022
In pg_dump Kokolatos (justinpryzby) 09:25 14:2¢

(gkokolatos),

Rachel Heaton

(rheaton)

M ada Cavmarmoantds

CommitFests

Reviewing a patch

Either way, if you review a patch
you can Edit the patch record In
the CF app and record yourself as

a reviewer.

eoe M- < O ® ©

Home / Commitfest 2022-11 View patch

Edit patch

Description:

Issue in GIN fast-insert: XLogBeginlnsert + Read/LockBuffer ordering

jcole1989 (James Coleman)

Enter part of name to see list

commitfest.postgresqgl.org

CommitFests

Adding a new patch :
CNON v < 0 © commitfest.postgresgl.org @) ¢ M + 88
M & New patch
* After sending your email to the
mailing list, click “New Patch” In New patch
the Open CommitFest.

pg_rewind: warn when checkpoint hasn't happened after promotion

* Find and attach your message Topic:
thread (“Find thread” shows the
most recent mailing list T e S —————rTTPp—— e
messages and allows search).

edit profile | log out

Other Resources

 PostgreSQL Wiki — Development information [1]
 Developer meeting notes
« Unofficial TODO lists and roadmaps
* Patch FAQs and checklists

» Editor and tooling information

1.https://wiki.postgresqgl.org/wiki/Development information

https://wiki.postgresql.org/wiki/Development_information

Codebase

Directory Layout

» contrib/ - Source for tools, utilities, and extensions that aren’t part of the
core installation but are nonetheless maintained as part of the main source
tree

» docs/ - SGML source for public documentation

* src/ - Source for core installation (including tests)

Directory Layout

Core source

* Not going to list everything here (see Stephen Frost’s talk, linked earlier, for a
more in-depth listing), but a few highlights:

* src/backend/ - server side of Postgres (x. c)
* src/include/ - server side of Postgres (x. h)

* src/bin/ - front-end tools for Postgres (psql, pg_* command line
executables, etc.)

* src/test/ - regression tests

Backend Structure

What component are you working on?

* E.g., query execution includes:
* Parser
e Optimizer
* Executor

 The Postgres source is fairly well organized; each subsystem or component
generally has a directory.

Backend Structure T —

How do the components fit together?

[Pos’['gres] [Pos.’[g/]res]

FParse Statement

. cc aftie Co utility Utilit
* Bruce Momjian has a talk “PostgreSQL .
Internals Through Pictures” referencing
this also (and more) [2]

 Backend flow chart is in the docs [1]

(Generate Paths

Optimal Path

» The Internals of PostgreSQL (online book) [3]

Plan

Execute Plan

[Utilities] [Catalog] [Storage Managers]

[Access Methods] [Nodes / Lists]

1.https://www.postgresqgl.org/developer/backend/
2.https://momijian.us/main/presentations/internals.html
3.https://www.interdb.jp/pg/

https://www.postgresql.org/developer/backend/
https://momjian.us/main/presentations/internals.html
https://www.interdb.jp/pg/

Understanding the Source

README files

* [he Postgres source contains a
significant number of helpful in-
tree documents as README

files.

 For example, see the long doc at
src/backend/optimizer/README

that includes data structure
Information, information on valid
JOIN tree construction, and plan
generation.

298 Optimizer Functions

300

301 The primary entry point is planner().

302
303

planner()

304 set up for recursive handling of subqueries

305
306
307
308
309
310
311
312
313

-subquery_planner()

pull up sublinks and subqueries from rangetable, if possible

canonicalize qual
Attempt to simplify WHERE clause to the most useful form; this includes
flattening nested AND/ORs and detecting clauses that are duplicated 1in
different branches of an OR.

simplify constant expressions

process sublinks

convert Vars of outer query levels into Params

314 --grouping_planner()

315
316
317
318
319
320
321

preprocess target list for non-SELECT queries
handle UNION/INTERSECT/EXCEPT, GROUP BY, HAVING, aggregates,
ORDER BY, DISTINCT, LIMIT
---query_planner()
make list of base relations used in query
split up the qual into restrictions (a=1) and joins (b=c)
find qual clauses that enable merge and hash joins

Understanding the Source

Comments

with a ScalarArrayOpExpr clause 1f we failed to deconstruct i1t into an

Commented * AND or OR tree, as for example if it has too many array elements.
u "./

if (IsA(clause, ScalarArrayOpExpr))

{

® YOur COde ShOUId genera”y :(c)z}earArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;

*scalarnode = (Node *) linitial(saop->args);

. Node *arraynode = (Node *) lsecond(saop->args);
include comment headers for Y .
" /,'.
eaCh funCtIOn- * If we can prove the scalar wnput to be null, and the operator 1s

x strict, then the SAOP result has to be null --- unless the array 1s
* empty. For an empty array, we'd get eilther false (for ANY) or true

® In“ne 'to COde yOu ShOuld explaln * (for ALL). So if allow_false = true then the proof succeeds anyway

for the ANY case; otherwise we can only make the proof 1f we can

reasoning for why assumptions frove the array nenempty.
hOId true, What yOu’re -try|ng -tO Lf (clause_is_strict_for(scalarnode, subexpr, false) &&

op_strict(saop->opno))

accomplish, etc. Yt nelens = 0;

if (allow_false && saop->useOlr)
return true; /* x/

: : * ScalarArrayOpExpr 1s a special case. Note that we'd only reach here
* The Postgres source Is heavily ’ |

Style

* Use proper project style to avoid unnecessary frustration with your patch! [1]
* [abs, not spaces, displayed as 4 columns per tab stop.
 Use a new line for opening braces; no braces around single statements.
* 80 character column limit.

* Be sure to follow the style of the surrounding code:

* E.Q., there are unfortunately lots of different variable naming styles (camel-
case, underscores, etc.); match the context as much as possible.

1.https://www.postgresqgl.org/docs/devel/source-format.html

Docs

 The docs/ top level directory contains the SGML/XML source for public
documentation.

 The markup uses DocBook [1].

* Note: DocBook source formatting style differs from the C source code.

* Single space indenting.

1.https://www.postgresqgl.org/docs/current/docguide-docbook.html

https://www.postgresql.org/docs/current/docguide-docbook.html

Bullt-in Facillities

Memory Management

Memory Contexts

* Postgres tracks memory usage as part of nested memory contexts.
* TopMemoryContext exists for the lifetime of a backend

 New contexts are created for each query, operations within a query (e.g., a
sort), sometimes per tuple, etc.

* CurrentMemoryContext is used for new allocations.

Memory Management

Managing Contexts

* There are multiple memory allocators available:

* AllocSet [1] is the standard allocator; maintains free lists in larger blocks of
memory.

* Generation [2] is useful for limiting underlying malloc/free calls when
memory is chunks are used in a roughly FIFO manner (e.g., a queue).

» Slab [3] is useful when “large numbers of equally-sized objects are
allocated (and freed).”

1.src/backend/utils/mmgr/aset.c
2.src/backend/utils/mmgr/generation.c
3.src/backend/utils/mmgr/slab.c

Memory Management

Managing Contexts

* (If needed) create a new context with
{AllocSet,Generation,Slab}ContextCreatel(...)

e Switch contexts with MemoryContextSwitchTo(context); make sure to
switch back. Common pattern looks like:

MemoryContext oldcxt;
oldcxt = MemoryContextSwitchTo(some_cxt);

<do work>

MemoryContextSwitchTo(oldcxt);

Memory Management

Managing Allocations

e palloc(Size size)

e palloc@(Size size)

« palloc_extended(Size size, int flags)
« repalloc(void *pointer, Size size)

e pfree(void *pointer)

* Note: sometimes you won’t need to explicitly free memory because the
entire context’s allocations are cleaned up with MemoryContextReset or
MemoryContextDelete (and friends).

src/include/utils/palloc.h

Logging and Error Handling

 Both are handled through the same infrastructure:

ereport(<level>
errcode(ERRCODE_..), # Optional
errmsg(..),
.) # Optional fields; e.g. errdetail(..) and errhint(..)

src/include/utils/elog.h

Logging and Error Handling

Log levels (non-error case)

e DEBUG{5,4,3,2,1}
» LOG: Operational messages sent to server log by default.

« INFO: Explicitly requested by user (e.g., VERBOSE); sent to client and not
server log by default.

* NOTICE: User-targeted helpful, expected messages; sent to client and not
server log by default.

* WARNING: Like NOTICE, but unexpected messages.

src/include/utils/elog.h

Logging and Error Handling

Log levels (error case)

* ERROR:
* Abort current transaction.
 Doesn’t return to caller.
* Cleans up memory, etc.

* FATAL: Abort current process.

» PANIC: Shutdown everything.

src/include/utils/elog.h

Data Structures

Lists

» List [1]: simple, expansible array implementation; empty list is NIL

» slist_head, dlist_head [2]: Single and doubly linked lists.

1.src/include/nodes/pg_list.h
2.src/include/lib/ilist.h

Data Structures
Hashtables

 Simplehash [1]

 Templated (by way of macros) specialized implementations for user types (improves
speed and memory usage at cost of complex setup and increased binary size)

* Open-addressing (good for CPU cache behavior)
* Dynahash [2] chained hashtable

 Shared memory (fixed size at startup) or backend-local.
* Partionable (improves shared memory access locking performance)

* (Guarantees stable pointers (hash conflicts don’t result in moving entries, thus more
performant for large keys)

1.src/include/lib/simplehash.h
2.src/backend/utils/hash/dynahash.c

Data Structures
Hashtables

* dshash_hash [1]}
 Concurrent

 Dynamic shared memory

1.src/include/lib/dshash.h

Data Structures
Other

* binaryheap [1]: full/balanced binary tree
* Bitmapset [2]: set of hon-negative integers (usually max value is low)
* bloom_filter [3]: Space-efficient set membership testing

» IntegerSet [4]: efficient large integer set; uses a B-tree internally with nearby
values stored in a packed representation

1.src/include/lib/binaryheap.h
2.src/include/nodes/bitmapset.h
3.src/include/lib/bloomfilter.h
4.src/include/lib/integerset.h, src/backend/lib/integerset.c

Data Structures
Other

* pairingheap [1]
* RBTree [2]

» StringInfo [3]: Extensible string buffer type (up to 1GB)

1.src/include/lib/pairingheap.h
2.src/include/lib/rbtree.h
3.src/include/lib/stringinfo.h

Algorithms

* Binary search: implemented inline in several places

* Bipartite matching [1]

 HyperLoglLog [2]: cardinality (unigue values) estimation
 Knapsack [3]

* Uniquing arrays [4]

* Templated (macros) sorting implementations [9]

1.src/include/lib/bipartite_match.h
2.src/include/lib/hyperloglog.h
3.src/include/lib/knapsack.h, src/backend/lib/knapsack.c
4.src/include/lib/qunique.h
5.src/include/lib/sort_template.h

GUCs (Grand Unified Configuration)

Runtime configuration

* Configured in conf files or set at runtime with the familiar SET <config_name>
.. Syntax.

* Whether runtime configuration is needed permanently for your feature is
necessary or not adding a GUC is often useful during development to switch
a feature on/off without rebuilding.

* Can have default and upper and lower bounds (if applicable).

* Optional hooks for showing, setting, and checking valid values.

GUCs (Grand Unified Configuration)

Adding a new GUC (simplified)

* Declare a global variable (bool, int, double, or charx) in your file.

 Add an entry to the appropriate ConfigureNames{Bool,Int,Real,String}
table in src/backend/utils/misc/quc_tables.c.

e For more details, see the “TO ADD AN OPTION” section In
src/backend/utils/misc/quc_tables.c.

Tooling

Working on a patch

Environment
Editor, etc.

* |I’m going to use my preferred setup [1] in the following demo.
* Vim: for editing
 ITmux: working in a terminal with multiple windows and panes
 Some custom scripting [2]
My setup isn’t the only way (but if you’re using emacs...you’re wrong &).

o Sample editor configuration files can be found in-tree at src/tools/editors/

1.https://qgithub.com/jcoleman/machine-setup
2.https://github.com/jcoleman/postgres-dev-tools

https://github.com/jcoleman/machine-setup
https://github.com/jcoleman/postgres-dev-tools

Terminal Demo
Applying a patch, building, and debugging

Debugging

* elog(WARNING, “..”) for good old fashioned print debugging (and it goes to
the client if you’re working in query execution!)

* |f you encounter a segfault or other crash be sure you’ve rebuilt (cleanly) and
re-initialized your data directory since your last pull/rebase.

» gdb or Lldb for an interactive debugger.

* rr [1] can “record” execution runs for replay.

1.https://wiki.postgresqgl.org/wiki/Getting_a_stack_trace_of_a_running_PostgreSQL_backend_on_Linux/BSD#Recording_Postgres_using_rr_Record_and_Replay_Framework

Testing

Running the tests

 Run core regression tests with make check
 Can run against local install with make installcheck
 Run all tests with make check-world

 Can run against local install with make installcheck-world

1.https://www.postgresqgl.org/docs/current/regress-run.html

https://www.postgresql.org/docs/current/regress-run.html

Testing

Regression tests

e Foundin src/test/regress/{sql,expected, results}/

* Consist of SQL files containing “tests” and the expected output from running
those files with psql

 Logs foundin src/test/regress/log/postmaster. log
* Not isolated/may reference previous files (can make pulling a test out difficult)

» Default to parallel groups; can run serially by setting MAX_CONNECTIONS=1

1.https://www.postgresqgl.org/docs/current/regress.html
2.https://wiki.postgresql.org/wiki/Regression test authoring

https://www.postgresql.org/docs/current/regress.html
https://wiki.postgresql.org/wiki/Regression_test_authoring

Testing
TAP tests

 Found in *x.pl files in a t/ subdirectories (e.g., of the source for various
binaries like src/bin/pg_rewind/t/)

* Run individual test files (while in e.g. src/bin/pg_rewind/) with
make check PROVE_TESTS=t/010 _no_checkpoint_after_promotion.pl

 |Logs found in tmp_check/log subdirectory

1.https://www.postgresqgl.org/docs/current/regress-tap.html
2.https://pgtap.org

http://010_no_checkpoint_after_promotion.pl
https://www.postgresql.org/docs/current/regress-tap.html
https://pgtap.org

Testing
cl

» Official repository is tested by the “buildfarm” made up of many user-run
machines referred to as “animals” (each with a fun name to boot).

* You can configure CirrusCl on your personal fork of the repo on GitHub:

* Supports various platforms so you can test against system types you don’t
have personal access to/different from your development environment.

e See src/tools/ci/README for details.

Submitting a Patch

* Break your change into a coherent set of patches (if necessary); for example:

* You might have a precursor patch that is a clean refactor and then a second patch to
make your actual change.

* You might have a second patch that’s useful for debugging (e.g., adding GUCs you
won’t actually want to keep around).

* Write message for mailing list (and commit messages) including:
* Motivation for change
« How the change works

 What you expect the outcome to be

Submitting a Patch

 Ensure code is formatted properly:

* pgindent [1] (found in source tree) is the canonical tool for formatting
source.

* Requires some tools to be installed; more information found at [2]

 Patch filenames should include the version of the patch and (if multiple files)
the index of the patch in the patch series.

e g1t format-patch —-v<n> master

1.https://qithub.com/postgres/postgres/iree/master/src/tools/pgindent
2.https://www.interdb.jp/blog/pgsqgl/pgindent/

https://github.com/postgres/postgres/tree/master/src/tools/pgindent
https://www.interdb.jp/blog/pgsql/pgindent/

