
© EnterpriseDB Corporation 2022 - All Rights Reserved

Know the less known:
A PostgreSQL Glossary
Devrim Gündüz
Postgres Expert @ EDB

Oct 2023

1

© EnterpriseDB Corporation 2022 - All Rights Reserved

Self introduction

● PostgreSQL Major Contributor

● Responsible for PostgreSQL RPM repos
(Red Hat, Rocky, AlmaLinux, Fedora and
SLES)

● Fedora and Rocky Linux contributor

● PostgreSQL community member

● Postgres expert @ EDB

● “The guy with the PostgreSQL tattoo"

● London, UK.

2

© EnterpriseDB Corporation 2022 - All Rights Reserved

…and nowadays:

3

© EnterpriseDB Corporation 2022 - All Rights Reserved

4

DJing!

© EnterpriseDB Corporation 2022 - All Rights Reserved

Agenda

● Motivation

● Glossary

● Hidden parameters

5

© EnterpriseDB Corporation 2022 - All Rights Reserved

Motivation

6

© EnterpriseDB Corporation 2022 - All Rights Reserved

7

Motivation

● 3 days, 4 tracks, lots of great talks

© EnterpriseDB Corporation 2022 - All Rights Reserved

8

Motivation

● 3 days, 4 tracks, lots of great talks
● There are great tech talks

© EnterpriseDB Corporation 2022 - All Rights Reserved

9

Motivation

● 3 days, 4 tracks, lots of great talks
● There are great tech talks
● You are new-ish, or not used to some of the terms

© EnterpriseDB Corporation 2022 - All Rights Reserved

10

Motivation

● 3 days, 4 tracks, lots of great talks
● There are great tech talks
● You are new-ish, or not used to some of the terms
● So, welcome to this talk!

© EnterpriseDB Corporation 2022 - All Rights Reserved

11

Motivation

● 3 days, 4 tracks, lots of great talks
● There are great tech talks
● You are new-ish, or not used to some of the terms
● So, welcome to this talk!
● Resources: Source code, documentation, blog posts

© EnterpriseDB Corporation 2022 - All Rights Reserved

“*”

12

© EnterpriseDB Corporation 2022 - All Rights Reserved

13

“*”

● Basic question first ;)
● What does * sign represent in SELECT * FROM t1;

© EnterpriseDB Corporation 2022 - All Rights Reserved

What is MVCC?

14

© EnterpriseDB Corporation 2022 - All Rights Reserved

15

MVCC

● Multi Version Concurrency Control
○ Implementation of concurrency in Postgres
○ Snapshot isolation

© EnterpriseDB Corporation 2022 - All Rights Reserved

16

MVCC

● Multi Version Concurrency Control
○ Implementation of concurrency in Postgres
○ Snapshot isolation

● “Readers do not block writers,
 writers do not block readers”.

© EnterpriseDB Corporation 2022 - All Rights Reserved

17

MVCC

● Multi Version Concurrency Control
○ Implementation of concurrency in Postgres
○ Snapshot isolation

● “Readers do not block writers,
 writers do not block readers”.

● Multiple version of the same row may occur
○ New versions are created during updates
○ Uncommitted transactions
○ Dead tuples (see next slides)

© EnterpriseDB Corporation 2022 - All Rights Reserved

18

MVCC

● Multi Version Concurrency Control
○ Implementation of concurrency in Postgres
○ Snapshot isolation

● “Readers do not block writers,
 writers do not block readers”.

● Multiple version of the same row may occur
○ New versions are created during updates
○ Uncommitted transactions
○ Dead tuples (see next slides)

● Side effect: VACUUM

© EnterpriseDB Corporation 2022 - All Rights Reserved

Glossary

19

© EnterpriseDB Corporation 2022 - All Rights Reserved

20

xact

● “Transaction”

© EnterpriseDB Corporation 2022 - All Rights Reserved

21

Transaction id

● “txid”

© EnterpriseDB Corporation 2022 - All Rights Reserved

22

Transaction id

● “txid”
● Unique identifier

○ 32-bits, ~ 4 billion
■ 64-bits txid is being discussed

© EnterpriseDB Corporation 2022 - All Rights Reserved

23

Transaction id

● “txid”
● Unique identifier

○ 32-bits, ~ 4 billion
■ 64-bits txid is being discussed

○ “Circle”
■ 2 billion in the past, 2 billion in the future

© EnterpriseDB Corporation 2022 - All Rights Reserved

24

Transaction id

● “txid”
● Unique identifier

○ 32-bits, ~ 4 billion
■ 64-bits txid is being discussed

○ “Circle”
■ 2 billion in the past, 2 billion in the future

○ 3 special (reserved) txids
■ 0: Invalid
■ 1: Bootstrap (used during initdb)
■ 2: Frozen (always visible, always active)

© EnterpriseDB Corporation 2022 - All Rights Reserved

25

Transaction id

● SELECT
○ Utilizes “virtual txid”

■ txid_current_if_assigned()

© EnterpriseDB Corporation 2022 - All Rights Reserved

26

ctid

● “The physical location of the row version within its table.”

© EnterpriseDB Corporation 2022 - All Rights Reserved

27

ctid

● “The physical location of the row version within its table.”
● “block number” and “location of the tuple in the block”

© EnterpriseDB Corporation 2022 - All Rights Reserved

28

ctid

● “The physical location of the row version within its table.”
● “block number” and “location of the tuple in the block”
● Do not depend on it

© EnterpriseDB Corporation 2022 - All Rights Reserved

29

ctid

● “The physical location of the row version within its table.”
● “block number” and “location of the tuple in the block”
● Do not depend on it
● UPDATE or VACUUM FULL will change it

© EnterpriseDB Corporation 2022 - All Rights Reserved

30

xmin

● “The identity (transaction ID) of the inserting
 transaction for this row version.”

© EnterpriseDB Corporation 2022 - All Rights Reserved

31

xmax

● “The identity (transaction ID) of the
 deleting or updating transaction”

© EnterpriseDB Corporation 2022 - All Rights Reserved

32

xmax

● “The identity (transaction ID) of the
 deleting or updating transaction”
○ or zero for an undeleted row version.

© EnterpriseDB Corporation 2022 - All Rights Reserved

33

xmax

● “The identity (transaction ID) of the
 deleting or updating transaction”
○ or zero for an undeleted row version.

● May be non-zero in a visible row version:

© EnterpriseDB Corporation 2022 - All Rights Reserved

34

xmax

● “The identity (transaction ID) of the
 deleting or updating transaction”
○ or zero for an undeleted row version.

● May be non-zero in a visible row version
○ Deleting transaction has not been committed *yet*

© EnterpriseDB Corporation 2022 - All Rights Reserved

35

xmax

● “The identity (transaction ID) of the
 deleting or updating transaction”
○ or zero for an undeleted row version.

● May be non-zero in a visible row version
○ Deleting transaction has not been committed *yet*
○ Deleting transaction was rolled back

© EnterpriseDB Corporation 2022 - All Rights Reserved

36

cmin

● The command identifier (starting at zero)
 within the inserting transaction.

© EnterpriseDB Corporation 2022 - All Rights Reserved

37

cmax

● The command identifier within the deleting transaction

© EnterpriseDB Corporation 2022 - All Rights Reserved

38

cmax

● The command identifier within the deleting transaction
○ or zero.

© EnterpriseDB Corporation 2022 - All Rights Reserved

39

Back to txid

● SELECT
○ Utilizes “virtual txid”

■ txid_current_if_assigned()

© EnterpriseDB Corporation 2022 - All Rights Reserved

40

Back to txid

● SELECT
○ Utilizes “virtual txid”

■ txid_current_if_assigned()
● Stored in the header of each row

○ xmin: INSERT
○ xmax: UPDATE or DELETE

■ (0, when this not apply)

© EnterpriseDB Corporation 2022 - All Rights Reserved

41

INSERT, DELETE and UPDATE

● INSERT
○ Insertion is done to the first available space

■ xmin: set to the txid
■ xmax: 0

© EnterpriseDB Corporation 2022 - All Rights Reserved

42

INSERT, DELETE and UPDATE

© EnterpriseDB Corporation 2022 - All Rights Reserved

43

INSERT, DELETE and UPDATE

● DELETE
○ Logical deletion
○ Long lasting transactions?
○ xmax is set to the txid
○ → dead tuple!

© EnterpriseDB Corporation 2022 - All Rights Reserved

44

INSERT, DELETE and UPDATE

Session one:

© EnterpriseDB Corporation 2022 - All Rights Reserved

45

INSERT, DELETE and UPDATE

Session two:

© EnterpriseDB Corporation 2022 - All Rights Reserved

46

INSERT, DELETE and UPDATE

© EnterpriseDB Corporation 2022 - All Rights Reserved

47

INSERT, DELETE and UPDATE

Another session:

© EnterpriseDB Corporation 2022 - All Rights Reserved

48

pg_xact

● “Transaction metadata logs”

© EnterpriseDB Corporation 2022 - All Rights Reserved

49

pg_xact

● “Transaction metadata logs”
● Per docs: “Subdirectory containing

 transaction commit status data”

© EnterpriseDB Corporation 2022 - All Rights Reserved

50

pg_xact

● “Transaction metadata logs”
● Per docs: “Subdirectory containing

 transaction commit status data”
● Formerly pg_clog

© EnterpriseDB Corporation 2022 - All Rights Reserved

51

pg_xact

● “Transaction metadata logs”
● Per docs: “Subdirectory containing

 transaction commit status data”
● Formerly pg_clog
● “bloat”

© EnterpriseDB Corporation 2022 - All Rights Reserved

52

datfrozenxid

 All about VACUUM

● All transaction IDs before this one have been replaced
 with a permanent transaction ID in this database.

© EnterpriseDB Corporation 2022 - All Rights Reserved

53

datfrozenxid

 All about VACUUM

● All transaction IDs before this one have been replaced
 with a permanent transaction ID in this database.

● Used to track whether the database
 needs to be vacuumed in order to prevent
 transaction ID wraparound
 or to allow pg_xact to be shrunk.

© EnterpriseDB Corporation 2022 - All Rights Reserved

54

datfrozenxid

 All about VACUUM

● All transaction IDs before this one have been replaced
 with a permanent transaction ID in this database.

● Used to track whether the database
 needs to be vacuumed in order to prevent
 transaction ID wraparound
 or to allow pg_xact to be shrunk.

● It is the minimum of the per-table
pg_class.relfrozenxid values

© EnterpriseDB Corporation 2022 - All Rights Reserved

55

datfrozenxid

● SELECT datname, age(datfrozenxid) FROM pg_database;

© EnterpriseDB Corporation 2022 - All Rights Reserved

56

multixact

● Used to support row locking by multiple transactions

© EnterpriseDB Corporation 2022 - All Rights Reserved

57

multixact

● Used to support row locking by multiple transactions
● Tuple headers: 24 bytes

○ Space is limited

© EnterpriseDB Corporation 2022 - All Rights Reserved

58

multixact

● Used to support row locking by multiple transactions
● Tuple headers: 24 bytes

○ Space is limited

● Lock information is stored in “multixact ID”
(multiple transaction id)
(remember: xact = transaction)

© EnterpriseDB Corporation 2022 - All Rights Reserved

59

multixact

● Used to support row locking by multiple transactions
● Tuple headers: 24 bytes

○ Space is limited

● Lock information is stored in “multixact ID”
(multiple transaction id)
(remember: xact = transaction)

● Concurrent locking of a row

© EnterpriseDB Corporation 2022 - All Rights Reserved

60

multixact

● Used to support row locking by multiple transactions
● Tuple headers: 24 bytes

○ Space is limited

● Lock information is stored in “multixact ID”
(multiple transaction id)
(remember: xact = transaction)

● Concurrent locking of a row
● pg_multixact

© EnterpriseDB Corporation 2022 - All Rights Reserved

61

multixact ID

● Implemented as 32-bit counter
● Very much like txid
● $PGDATA/pg_multixact/members: Holds the list of

 members in each multixact
● VACUUM: Will remove old files from

pg_multixact/members and pg_multixact/offsets

© EnterpriseDB Corporation 2022 - All Rights Reserved

62

relfrozenxid

● Per docs: “All transaction IDs before this one
have been replaced with a
permanent (“frozen”) transaction ID in this table”

© EnterpriseDB Corporation 2022 - All Rights Reserved

63

relfrozenxid

● Per docs: “All transaction IDs before this one
have been replaced with a
permanent (“frozen”) transaction ID in this table”

● Tracks vacuum needs to prevent txid wraparound
and allowing shrinking of pg_xact

© EnterpriseDB Corporation 2022 - All Rights Reserved

WAL

64

© EnterpriseDB Corporation 2022 - All Rights Reserved

65

WAL

● Write Ahead Log

© EnterpriseDB Corporation 2022 - All Rights Reserved

66

WAL

● Write Ahead Log
● Logging of transactions

© EnterpriseDB Corporation 2022 - All Rights Reserved

67

WAL

● Write Ahead Log
● Logging of transactions
● Designed to prevent data loss in most of the situations

© EnterpriseDB Corporation 2022 - All Rights Reserved

68

WAL

● Write Ahead Log
● Logging of transactions
● Designed to prevent data loss in most of the situations
● OS crash, hardware failure, PostgreSQL crash.

© EnterpriseDB Corporation 2022 - All Rights Reserved

69

WAL

● Write Ahead Log
● Logging of transactions
● Designed to prevent data loss in most of the situations
● OS crash, hardware failure, PostgreSQL crash.
● Built-in feature

© EnterpriseDB Corporation 2022 - All Rights Reserved

70

WAL

● Transaction logging!

© EnterpriseDB Corporation 2022 - All Rights Reserved

71

WAL

● Transaction logging!
● Replication

© EnterpriseDB Corporation 2022 - All Rights Reserved

● Transaction logging!
● Replication
● PITR

72

WAL

© EnterpriseDB Corporation 2022 - All Rights Reserved

73

WAL

● Transaction logging!
● Replication
● PITR
● REDO

© EnterpriseDB Corporation 2022 - All Rights Reserved

74

WAL

● Transaction logging!
● Replication
● PITR
● REDO
● Sequentially availability is a must.

© EnterpriseDB Corporation 2022 - All Rights Reserved

75

WAL

● Transaction logging!
● Replication
● PITR
● REDO
● Sequentially availability is a must.
● REDO vs UNDO

© EnterpriseDB Corporation 2022 - All Rights Reserved

76

WAL

● Transaction logging!
● Replication
● PITR
● REDO
● Sequentially availability is a must.
● REDO vs UNDO
● No REDO for temp tables and unlogged tables.

© EnterpriseDB Corporation 2022 - All Rights Reserved

LSN

77

© EnterpriseDB Corporation 2022 - All Rights Reserved

78

LSN

● Log Sequence Number

© EnterpriseDB Corporation 2022 - All Rights Reserved

79

LSN

● Log Sequence Number
● Position of the record in WAL file.

© EnterpriseDB Corporation 2022 - All Rights Reserved

80

LSN

● Log Sequence Number
● Position of the record in WAL file.
● Provides uniqueness for each WAL record.

© EnterpriseDB Corporation 2022 - All Rights Reserved

81

LSN

● Log Sequence Number
● Position of the record in WAL file.
● Provides uniqueness for each WAL record.
● 64-bit integer (historically 2x32-bit)

© EnterpriseDB Corporation 2022 - All Rights Reserved

82

LSN

● Log Sequence Number
● Position of the record in WAL file.
● Provides uniqueness for each WAL record.
● 64-bit integer (historically 2x32-bit)
● Per docs: “Pointer to a location in WAL file”

© EnterpriseDB Corporation 2022 - All Rights Reserved

83

LSN

● Log Sequence Number
● Position of the record in WAL file.
● Provides uniqueness for each WAL record.
● 64-bit integer (historically 2x32-bit)
● Per docs: “Pointer to a location in WAL file”
● LSN: Block ID + Segment ID

© EnterpriseDB Corporation 2022 - All Rights Reserved

84

LSN

● Log Sequence Number
● Position of the record in WAL file.
● Provides uniqueness for each WAL record.
● 64-bit integer (historically 2x32-bit)
● Per docs: “Pointer to a location in WAL file”
● LSN: Block ID + Segment ID
● During recovery, LSN on the page and LSN in the WAL file are compared.

© EnterpriseDB Corporation 2022 - All Rights Reserved

85

LSN

● Log Sequence Number
● Position of the record in WAL file.
● Provides uniqueness for each WAL record.
● 64-bit integer (historically 2x32-bit)
● Per docs: “Pointer to a location in WAL file”
● LSN: Block ID + Segment ID
● During recovery, LSN on the page and LSN in the WAL file are compared.
● The larger one wins.

© EnterpriseDB Corporation 2022 - All Rights Reserved

86

THANK YOU

86

Now it is time for questions!

© EnterpriseDB Corporation 2022 - All Rights Reserved

Bonus:postgresql.
conf parameters

87

© EnterpriseDB Corporation 2022 - All Rights Reserved

Wait, what?

88

© EnterpriseDB Corporation 2022 - All Rights Reserved

89

“Hidden” parameters in postgresql.conf

● Mainly for developers
○ …and /or advanced users

© EnterpriseDB Corporation 2022 - All Rights Reserved

90

“Hidden” parameters in postgresql.conf

● Mainly for developers
○ …and /or advanced users

● …or for DBAs who know what they are doing

© EnterpriseDB Corporation 2022 - All Rights Reserved

91

“Hidden” parameters in postgresql.conf

● Mainly for developers
○ …and /or advanced users

● …or for DBAs who know what they are doing
● Not included in postgresql.conf

© EnterpriseDB Corporation 2022 - All Rights Reserved

In short:

92

© EnterpriseDB Corporation 2022 - All Rights Reserved

93

In short:

© EnterpriseDB Corporation 2022 - All Rights Reserved

94

In short:

© EnterpriseDB Corporation 2022 - All Rights Reserved

95

“Hidden” parameters in postgresql.conf

• allow_system_table_mods (boolean)
• ignore_checksum_failure (boolean)
• zero_damaged_pages (boolean)
• ignore_invalid_pages (boolean)
• ignore_system_indexes (boolean)

© EnterpriseDB Corporation 2022 - All Rights Reserved

96

“Hidden” parameters in postgresql.conf

• post_auth_delay (integer)

• pre_auth_delay (integer)

• wal_consistency_checking (string)

• wal_debug (boolean)

• backtrace_functions (string)

• debug_deadlocks (boolean)

• log_btree_build_stats (boolean)

© EnterpriseDB Corporation 2022 - All Rights Reserved

97

“Hidden” parameters in postgresql.conf
• trace_notify (boolean)

• trace_recovery_messages (enum)

• trace_sort (boolean)

• trace_locks (boolean)

• trace_lwlocks (boolean)

• trace_userlocks (boolean)

• trace_lock_oidmin (integer)

• trace_lock_table (integer)

© EnterpriseDB Corporation 2022 - All Rights Reserved

98

“Hidden” parameters in postgresql.conf

• jit_debugging_support (boolean)

• jit_dump_bitcode (boolean)

• jit_expressions (boolean)

• jit_profiling_support (boolean)

• jit_tuple_deforming (boolean)

© EnterpriseDB Corporation 2022 - All Rights Reserved

99

“Read-only” parameters in PostgreSQL

• data_checksums (boolean)

• Initdb , off by default

• block_size (integer)

• 8192 byte (8kB)

• debug_assertions (boolean)

• off

•

© EnterpriseDB Corporation 2022 - All Rights Reserved

100

“Read-only” parameters in PostgreSQL

• lc_*

•

© EnterpriseDB Corporation 2022 - All Rights Reserved

101

“Read-only” parameters in PostgreSQL
• max_function_args (integer)

• 100

• max_identifier_length (integer)

• 63

• multibyte

• max_index_keys (integer)

• 32

• segment_size (integer)

• 128

© EnterpriseDB Corporation 2022 - All Rights Reserved

102

“Read-only” parameters in PostgreSQL

• server_encoding (string)

• initdb, UTF-8

• server_version (string)

• 15.2

• 16devel

• server_version_num (integer)

• 150002

• 160000

© EnterpriseDB Corporation 2022 - All Rights Reserved

103

“Read-only” parameters in PostgreSQL

• wal_block_size (integer)

• 8192 byte

• Not the same as block_size

• wal_segment_size (integer)

• “2”

• → 16 MB

© EnterpriseDB Corporation 2022 - All Rights Reserved

Know the less known:
A PostgreSQL Glossary
Devrim Gündüz
Postgres Expert @ EDB

Oct 2023

104

