Avoid Angering the
PostgreSQL Elder Gods

Presented by
R Keith Fiske / @keithf4

r~

Senior Database Engineer @ Crunchy Data
(po_partman, pgMonitor, pg_extractor)

lides.keithf4.com elder_ gods

https://github.com/pgpartman/pg_partman
https://github.com/CrunchyData/pgmonitor
https://github.com/omniti-labs/pg_extractor
http://slides.keithf4.com/pg_elder_gods.pdf

CRUNCHY DATA SOLUTIONS, INC

e Industry leader in providing enterprise PostgreSQL support and open
source solutions
e 100% Open Source PostgreSQL
o Nolock-in

e Crunchy Postgres
o High Availability
o Monitoring
o Hardened
o Common Criteria EAL 2+
e Crunchy Postgres for Kubernetes
o Operator
e Crunchy Bridge
o Fully-managed Postgres on your choice of cloud (AWS, Azure, GCP)

@ crunchydata

Talk Roadmap

e What are Transaction IDs?
e The First God

o Transaction ID Exhaustion

e The Second God

o Bloat

@ crunchydata

Transaction IDs (XID)

e (Almost) always increasing 32-bit unsigned integer value;
therefore maximum value of approximately 4 billion.

e MultiVersion Concurrency Control (MVCC) depends on being able
to compare XID numbers

e In general, a tuple with an insertion XID greater than the current XID
is "in the future” and should not be visible to the current transaction

e A tuple with an insertion XID less than the current is "in the past’
and should be visible

e A tuple with a deletion xid is the opposite

@ crunchydata

Finding XIDs - Hidden Columns

keith@nextcloud=# select xmin, xmax, cmin, cmax, ctid from oc_authtoken;
xmax | cmin

1364690
2848

1364697
1626477 | 162648
1626490 | 1626491

0
0
1626287 7
0
)

Xxmin - insertion xid
xmax - deletion xid
cmin, cmax - transaction level xids

ctid - physical location of the row version within its table
o Can change with update or vacuum full, so do not use for long term identification

o Useful for removing duplicate rows
@ crunchydata

Transaction IDs (XID)

e Transaction Isolation Level can also affect visibility of
committed transactions
o https://www.postgresgl.org/docs/current/transaction-iso.html
e Normal XIDs are compared using modulo-232 arithmetic. This
means that for every normal XID, there are two billion XIDs
that are “older” and two billion that are “newer”;
e One of the more important PG Administration doc pages to
read and understand
o https://www.postgresqgl.org/docs/current/routine-vacuuming.html

@ crunchydata

https://www.postgresql.org/docs/current/transaction-iso.html
https://www.postgresql.org/docs/current/routine-vacuuming.html

Freezing Tuples

e One of vacuum's jobs: mark tuples so they are visible to all future
transactions.
e Sets flag bit in tuple that row is 'frozen” so that it is always in the past

o Also updates Visibility Map
o Prior to 9.4, would actually set xmin to FrozenTransactionld value

e Cannot freeze rows being used by active transactions

o Monitoring for long running transactions is an easy step in avoiding exhaustion
o Fewer long running transactions leads to more efficient vacuuming

e Modern PG versions can check page level frozen flag in Visibility Map
o Tremendously speeds up vacuum on large tables with fewer changes

e So what happens after billions of transactions with no freezing?

@ crunchydata

XID Exhaustion

Normal XID space is circular with no endpoint

Wraparound is fine, the real problem is XID exhaustion
o Wraparound happens normally when the current XID reaches max uint
o Butit's not fine when there's no new XIDs for comparison

e Suddenly transactions that were in the past appear to be in the future
o Valid tuples no longer visible; they're there but no one can see them

e Database allows no more writes
o Docs mention single user mode to fix. May not be needed in more modern versions.
o Perform a vacuum on entire database or targeted tables to freeze rows

e To avoid this, it is necessary to vacuum every table in every database at

least once every two billion transactions
o Autovacuum can be disabled, but vacuuming MUST be done manually on active

databases.
@ crunchydata

Transaction Age

e datfrozenxid is a lower bound on the unfrozen XIDs appearing in that

database; ie the oldest unvacuumed tuple

e age() applied to XID computes the given value compared to the current

normal XID

e Watch for maximum age approaching 2 billion

nextcloud

postgres
template®
templatel

1364151
1364155
1364155
1364155
1364155

1364871
1364871
1364871
1364871
1364871

@ crunchydata

Emergency Vacuuming

e When a table's oldest tuple age reaches autovacuum_freeze_max_age, PostgreSQL will
run an “‘emergency” autovacuum

autovacuum: VACUUM public.orders (to prevent wraparound)

e Default value is 200 million; well below the max value of 2 billion

e This vacuum is more aggressive and runs even with autovacuum disabled
o Normal vacuum skips pages that have no dead tuples even if there are unfrozen XIDs
o Aggressive freezes all eligible unfrozen XIDs
e vacuum_failsafe_age (PG14+)
o Ignores vacuum cost delay (discussed later) & index vacuuming
o 1.6 billion

e Do notrely on this if autovac is disabled. Often triggers many tables needing vacuuming at
the same time

e Other less commmon situations can cause this as well
o See Routing Vacuuming

@ crunchydata

https://www.postgresql.org/docs/current/routine-vacuuming.html

Monitoring for Exhaustion

WITH max_age AS (
SELECT 2000000000 AS max_old_xid
, setting AS autovacuum_freeze_max_age
FROM pg_catalog.pg_settings
WHERE name = 'autovacuum_freeze_max_age')

per_database_stats AS (
SELECT datname
, m.max_old_xid: :INT
, m.autovacuum_freeze_max_age: :INT
, age(d.datfrozenxid) AS oldest_current_xid
FROM pg_catalog.pg_database d
JOIN max_age m ON (TRUE)
WHERE d.datallowconn)

SELECT MAX(oldest_current_xid) AS oldest_current_xid
, MAX(ROUND(100*(oldest_current_xid/max_old_xid::FLOAT))) AS
percent_towards_wraparound
, MAX(ROUND(100*(oldest_current_xid/autovacuum_freeze_max_age::FLOAT))) AS
percent_towards_emergency_autovac
FROM per_database_stats;

@ crunchydata

Monitoring for Exhaustion

e Simplified query result for easy monitoring

oldest_current_xid | percent_towards_wraparound | percent_towards_emergency_autovac
____________________ o o o e

1366360 | 0

e Emergency threshold - warn 110%, critical 125%
o Reaching 100% isn't a problem unless many large tables all do it at once
o Exceeding emergency for extended periods of time means that autovacuum
is not keeping up
o Resolving this alert ALWAYS prevents wraparound/exhaustion
e Wraparound threshold - warn 60%, critical 75%
@ crunchydata

data

>
B o
(&)
c
=)
| S
(8]

Vacuum Multitasking - Row Cleanup

e Delete only marks tuples "unavailable’ or "dead"
o Sets xmax to determine tuple visibility

Update internally is Delete/Insert
e Vacuum marks "dead” tuples as available space

o bloat = dead tuples + available space
) select n_dead_tup from pg_stat_all_tables;

e Excessive bloat can cause heavier IO

o Smallest data size that PG can return is a page (default 8K)
o Data spread thinly across pages means more pages need to be fetched

e Not all bloatis bad

o Re-using available space saves on |0 resource usage
e Find the balance!

@ crunchydata

Monitoring Bloat - Old Way

Fancy queries (https://wiki.postgresgl.org/wiki/Show database bloat)
Instant result, based on statistics. Mostly good, but can be wildly inaccurate.

SELECT

current_database(), schemaname, tablename, /*reltuples::bigint, relpages::bigint, otta,*/
ROUND((CASE WHEN otta=0 THEN 0.0 ELSE sml.relpages::float/otta END)::numeric,1) AS tbloat,
CASE WHEN relpages < otta THEN © ELSE bs*(sml.relpages-otta)::BIGINT END AS wastedbytes,

iname, /*ituples::bigint, ipages::bigint, iotta,*/
ROUND((CASE WHEN iotta=@ OR ipages=0 THEN 0.0 ELSE ipages::float/iotta END)::numeric,1) AS ibloat,

CASE WHEN ipages < iotta THEN @ ELSE bs*(ipages-iotta) END AS wastedibytes

FROM (

SELECT
schemaname, tablename, cc.reltuples, cc.relpages, bs,
CEIL((cc.reltuples*((datahdr+ma-
(CASE WHEN datahdr%ma=0 THEN ma ELSE datahdr%ma END))+nullhdr2+4))/(bs-20::float)) AS otta,
COALESCE(c2.relname, '?') AS iname, COALESCE(c2.reltuples,®) AS ituples, COALESCE(c2.relpages,@) AS ipages,

COALESCE(CEIL((c2.reltuples*(datahdr-12))/(bs-208::float)),0) AS iotta -- very rough approximation, assumes all cols

FROM (
SELECT
ool

crunchydata

https://wiki.postgresql.org/wiki/Show_database_bloat

Monitoring Bloat - Better Ways

pgstattuple
o https://www.postgresgl.org/docs/current/pgstattuple.html
Statistics summary for tables and indexes
Free space and dead tuple stats for tables and B-tree indexes
Stats for other index types available, but nothing bloat related
Full-table scan to gather 100% accurate stats
o Llarge tables/databases can take a while to scan
o Approximate function reports accurate dead and estimated live and
free space

Must target individual table OR index for each call
o Does not include TOAST in table scan

@ crunchydata

https://www.postgresql.org/docs/current/pgstattuple.html

pgstattuple

keith@nextcloud=# select * from pgstattuple('oc_users');
-[RECORD 1]------

table_len

tuple_count

tuple_len

tuple_percent

dead_tuple_count
dead_tuple_len
dead_tuple_percent
free_space
free_percent

@ crunchydata

Freespace Map

e pg_freespacemap
o https://www.postgresgl.org/docs/current/pgfreespacemap.html
e Functions to show the value recorded in the free space map for a given page,
or for all pages in the relation
e Shows approximate free space on each page, one row per page
e Not kept fully up-to-date in real time. Another job for Vacuum!

keith@nextcloud=# select * from pg_freespace('oc_jobs');
blkno | avail

@ crunchydata

https://www.postgresql.org/docs/current/pgfreespacemap.html

Monitoring Bloat - Easy Way

e pg_bloat_check
o https://github.com/keithf4/pg bloat check

e Reports table and B-tree bloat using pgstattuple

e For each table, scans all indexes and TOAST
o Accounts for fillfactor

e Can scan entire database or target tables

e Filters for minimum object size, wasted space size/percent
o Fine-grained exclude filter based on config file

e Stores results in table
o Allows real-time monitoring without having to wait for full table scans

@ crunchydata

https://github.com/keithf4/pg_bloat_check

Vacuum Tuning

autovacuum
autovacuum_analyze_scale_factor
autovacuum_analyze_threshold
autovacuum_freeze_max_age
autovacuum_max_workers
autovacuum_multixact_freeze_max_age
autovacuum_vacuum_cost_delay
autovacuum_vacuum_cost_limit
autovacuum_vacuum_insert_scale_factor
autovacuum_vacuum_insert_threshold
autovacuum_vacuum_scale_factor
autovacuum_vacuum_threshold
log_autovacuum_min_duration
vacuum_cost_delay

vacuum_cost_limit
vacuum_cost_page_dirty
vacuum_cost_page_hit
vacuum_cost_page_miss
vacuum_freeze_min_age
vacuum_freeze_table_age

setting

200000000
3
400000000
2

-1

0.2

1000

0.2

50

600000

0

200

20

;

2
50000000
150000000

@ crunchydata

When Does Autovacuum Run?

[outovocuum_freeze_max_oge
o Controls emergency wraparound vacuum run
o Increase to give busy databases more time for normal autovac to run

e vacuum_freeze_table_age controls when aggressive vacuum runs
(non-wraparound)
e autovacuum_vacuum_scale_factor,

autovacuum_analyze_scale_factor
o Percentage of table that has gotten updated/deleted

e aqutovacuum_vacuum_threshold,

autovacuum_analyze_threshold
o Number of tuples updated/deleted

e scale factor + threshold = run vacuum
e autovacuum_vacuum_insert_scale_factor,

autovacuum_vacuum_insert_threshold
o Settings added in PG13 for insert-only tables
o Previous versions would only trigger vacuum during emergency

@ crunchydata

Autovacuum Resource Usage

e Vvacuum_cost_page_dirty,
vacuum_cost_page_hit,
vacuum_cost_page_miss
o Accumulates cost points while running

e vacuum_cost_limit,
autovacuum_vacuum_cost_Ilimit
o When accumulation reaches limit ...

e Vvacuum_cost_delay,
autovacuum_vacuum_cost_delay

o ..delay for this time
o Manual vacuum has no cost delay and is why it can run faster

@ crunchydata

Per-Table Tuning

select * from pg_stat_all_tables where relname = 'oc_user_status';

-[RECORD 1]-------
relid

schemaname

relname

seg_scan
seq_tup_read
idx_scan
idx_tup_fetch
n_tup_ins
n_tup_upd
n_tup_del
n_tup_hot_upd
n_live_tup
n_dead_tup
n_mod_since_analyze
n_ins_since_vacuum
last_vacuum
last_autovacuum
last_analyze
last_autoanalyze
vacuum_count
autovacuum_count
analyze_count
autoanalyze_count

public
oc_user_status
58480
175440
2655
2653

3

253

0

2

3

51

54

0

2023-02-01 18:05:19.362647-05

2023-02-01 17:41:18.713626-05
0

2
0
2

@ crunchydata

Per-Table Tuning

Tune database level for most commmon case

Tune at table level depending on how table is used
Determine tuple change rate

Run hourly export to CSV file (use COPY command)

Determine hourly/daily/weekly rate of n_tup_del + n_tup_upd
o Insert only tables can look at n_tup_ins
Set scale factors to zero for autovacuum and analyze
o Percentage means autovac could run less often as table gets larger
Set threshold to values of tuple change to determine autovacuum run
intervals
o Ex. 22432 updates per day + 32432 deletes per day = 54864

o Set vacuum threshold to 54864 * 7 to have (auto)vacuum about once a week
o Setanalyze threshold to 54864 [2 to have analyze run 2 times per day (keep stats

updated)
@ crunchydata

Is it working?

e If n_dead_tup is not a relatively low number, autovacuum is not
keeping up or running at all

e n_mod_since_analyze this number should be close to your analyze
threshold value

e n_ins_since_vacuum if insert only table, should be close to your
vacuum insert threshold value

e last_autovacuum & last_autoanalyze should be within your desired
runtime interval

e n_tup_hot_upd not vacuum related, but for a heavily updated
tables, can let you know if fillfactor is effective

@ crunchydata

[creature] Release me.

@ crunchy

Keep Them Contained
e Transaction IDs are how PostgreSQL manages data visibility

e Ensure any PostgreSQL monitoring solution you use has the
Exhaustion/Wraparound metric

e Exhaustion and Bloat are not going to happen right away
o Could be years before they are a problem
o Monitor now so they never are

e More recent versions of PG handle exhaustion prevention much

better. Upgrade!
@ crunchydata

Keep Them Contained

These slides - http://slides.keithf4.com/pg elder gods.pdf
PostgreSQL Home Page - postgresgl.org

Crunchy Data Solutions, Inc - crunchydata.com

Planet PostgreSQL Community News Feed - planet.postgresqgl.org
PostgreSQL Extension Network - pgxn.org

Art Credit

o Cthulhu Images - https://andreewallin.com/
o Netflix: Love, Death & Robots
m Season 3: In Vaulted Halls Entombed

@ crunchydata

http://slides.keithf4.com/pg_elder_gods.pdf
https://www.postgresql.org
https://www.crunchydata.com
https://planet.postgresql.org
https://www.pgxn.org
https://andreewallin.com/
https://www.netflix.com

