
It’s Not You, It’s  Me  Your Tuples:

BREAKING UP WITH 
MASSIVE TABLES via 
PARTITIONING
Chelsea Dole
cdole@brex.com



➔ Staff Software Engineer, Brex
◆ “The credit card for startups”, expense 

management software
◆ Previously: Data Engineer, Backend Engineer

➔ Tech Lead, Data Storage Team
◆ Postgres infrastructure
◆ Query optimization
◆ & more!

Chelsea Dole



Outline
1. What is partitioning?

a. Fundamentals of partitioning vs sharding
b. The Postgres partitioning ecosystem

2. Partitioning in Postgres
a. Types of partitioning: pros, cons, etc

3. Why partition (or not)?
a. Actual vs perceived benefits of partitioning
b. Gotchas

4. How to partition an existing table
a. Methodology and trade-offs of four separate 

migration methods

5. Maintenance, Configuration, & 
Observability



1. What is 
partitioning? 



What is partitioning?
Splitting 1 larger, logical table into n smaller, physical tables [1]

students vs

students_p1 students_p2 students_p3

students

https://www.postgresql.org/docs/current/ddl-partitioning.html


SELECT id, full_name FROM students WHERE id = 1;

students vs

students_p1 students_p2 students_p3

students



Sharding vs partitioning

students

students

students

students_p1

students_p2

students_p3



Sharding: splitting 1 dataset 
across multiple nodes

(sometimes called “horizontal partitioning”)

Partitioning: splitting 1 
dataset across multiple 
tables on the same node

students

students

students

students_p1

students_p2

students_p3



Partitioning in Postgres
● PG 9.6: partitioning via “table inheritance”

○ Manual creation of “child tables”
○ Manual creation of triggers for INSERTs

● PG 10: declarative partitioning
○ Native support of partitioned tables:

■ CREATE TABLE … PARTITION BY …
○ INSERT “tuple routing” & pruning for SELECTs

● PG 11: 
○ Critical usability features for declarative partitioning
○ Default partition, hash type, UPDATE “tuple routing”, 

partition wise JOIN, & more

Difficult 
setup, bad 
performance

Easy syntax, 
basic features

Solid features, 
broadly usable



Partitioning in Postgres

● PG 12 - PG16+:
○ Declarative partitioning performance & usability 

improvements, ex:
■ ATTACH/DETACH partition concurrently
■ Partition pruning improvements
■ Logical replication for partitioned tables
■ Reduced table locking on INSERT
■ & much more

Mature, 
first-class 
Postgres 
feature



2. Partitioning 
methods



1. Range
2. List
3. Hash

Partition key:  

Defining how data is 
subdivided into 
partition tables



1. Range partitioning
● Partitions contain values within a predefined min/max

● Most common & useful method of partitioning

Examples:

● Time range data, mostly querying recent data

● Dashboard of “events”, preloading in chronological order



postgres=# CREATE TABLE students (
  id          BIGINT  NOT NULL,
  full_name   VARCHAR NOT NULL,
  school_name VARCHAR NOT NULL,
  grad_year   INTEGER NOT NULL,
  inserted_at TIMESTAMPTZ NOT NULL,
  PRIMARY KEY(id, inserted_at)
) PARTITION BY RANGE(inserted_at);

postgres=# CREATE TABLE students_09_2023 PARTITION OF students
FOR VALUES FROM ('2023-09-01 00:00:000') TO ('2023-09-30 23:59:999'); 

postgres=# CREATE TABLE students_10_2023 PARTITION OF students
FOR VALUES FROM ('2023-10-01 00:00:000') TO ('2023-10-31 23:59:999'); 

<...>



2. List partitioning
● Partitioning based on explicit column value options

● Low cardinality values & DEFAULT partition

● Skewed partition table size

Examples:

● Data separated by user region (EX: “eu”, “apac”, etc)

● Data may be bulk loaded/dropped by list partition

● Potential values for PK do not change dynamically



postgres=# CREATE TABLE students (
  id          BIGINT  NOT NULL,
  full_name   VARCHAR NOT NULL,
  school_name VARCHAR NOT NULL,
  grad_year   INTEGER NOT NULL,
  inserted_at TIMESTAMPTZ NOT NULL,
  PRIMARY KEY(id, grad_year)
) PARTITION BY LIST(grad_year);

postgres=# CREATE TABLE students_2023 PARTITION OF students
FOR VALUES IN (2023);
 
postgres=# CREATE TABLE students_2024 PARTITION OF students
FOR VALUES IN (2024);

postgres=# CREATE TABLE students_default PARTITION OF students DEFAULT;



3. Hash partitioning
● Partitioning based on a hashed column value, defining 

MODULUS & REMAINDER

● Usually used to distribute values evenly across smaller 
tables when there is no “natural” partition key

Examples:

● Partitioning is necessary for table maintenance/health,  but there is no 
natural partition key



postgres=# CREATE TABLE students (
  id          BIGINT  PRIMARY KEY,
  full_name   VARCHAR NOT NULL,
  school_name VARCHAR NOT NULL,
  grad_year   INTEGER NOT NULL,
  inserted_at TIMESTAMPTZ NOT NULL
) PARTITION BY HASH(id);

postgres=# CREATE TABLE students_0 PARTITION OF students FOR VALUES 
WITH (MODULUS 3, REMAINDER 0);

postgres=# CREATE TABLE students_1 PARTITION OF students FOR VALUES 
WITH (MODULUS 3, REMAINDER 1);

postgres=# CREATE TABLE students_2 PARTITION OF students FOR VALUES 
WITH (MODULUS 3, REMAINDER 2);



3. Why partition 
(or not)?



Faster, parallelizable 
autovacuum

Faster, parallelizable 
index maintenance

[Range]
Natural page ordering

Safe & easy bulk data 
deletion via DETACH

TLDR;

➔ Query performance 
improvements

➔ Bloat reduction
➔ Better cache efficiency

Direct, guaranteed  
impact:

Indirect, probable 
impact:

Smaller, 
partitioned

tables



Smaller, 
partitioned

tables

Faster, parallelizable 
autovacuum

Faster, parallelizable 
index maintenance

[Range]
Natural page ordering

Safe & easy bulk data 
deletion via DETACH

● More recent xmin horizon → less 
bloat → query performance

● Up-to-date VisibilityMap → 
fewer heap fetches during scans

● Bulk DELETE (& INSERT) without 
table bloat or resource usage

● Smaller (cheaper?) disk 

● Fresh data in shared_buffers 
→ query performance

● Better cache efficiency

● Building/rebuilding → lower impact
● More recent xmin horizon



Partitioning has so many 
benefits! I should I just 
partition everything!



Partitioning has so many 
benefits! I should I just 
partition everything!



Downsides of partitioning
● Possible negative impact on performance

○ Bad performance on queries without partition key
○ Increased query planning time with high partition count

■ This downside is drastically reduced in recent version of PG

● Stronger Postgres knowledge required from app developers & 
product
○ Understanding the impact of writing queries without partition key
○ Postgres becomes less of a “generic, all-purpose tool”

● Advanced features → advanced expertise
○ Postgres “partitioning ecosystem” requires more bespoke knowledge
○ Advanced observability, knowledge of “gotchas”, extensions, etc



When is partitioning “worth it”?

Industry rule-of-thumb:
● Table size >=100GB ⭐

Postgres docs:
● Table size > physical memory of the server



When is partitioning “worth it”?
My (far less official) rules-of-thumb:

RANGE partitioning:
● Easily the best method/return on value
● If your table has a “natural” range partition key or if you want to “expire” old 

data, do it

LIST partitioning:
● If you need to regularly bulk DELETE or INSERT data for a new list option

HASH partitioning:
● Partitioning is needed for maintenance reasons, but there’s no natural PK
● There are no plans to ATTACH/DETACH partitions



Downsides of partitioning
● Possible negative impact on performance

○ Bad performance on queries without partition key
○ Increased query planning time with high partition count

■ This downside is drastically reduced in recent version of PG

● Stronger Postgres knowledge required from app 
developers & product
○ Understanding the impact of writing queries without partition key

● Advanced features → advanced expertise
○ Postgres “partitioning ecosystem” requires more bespoke knowledge
○ Advanced observability, knowledge of “gotchas”, extensions, etc



The Big Gotcha
Table primary keys & unique constraints must include the partition key

ERROR: insufficient columns in PRIMARY KEY constraint 
definition

PRIMARY KEY constraint on table "students" lacks column 
"inserted_at" which is part of the partition key.



postgres=# CREATE TABLE students (
  id          BIGINT  NOT NULL,
  full_name   VARCHAR NOT NULL,
  school_name VARCHAR NOT NULL,
  grad_year   INTEGER NOT NULL,
  inserted_at TIMESTAMPTZ NOT NULL,
  PRIMARY KEY(id, inserted_at)
) PARTITION BY RANGE(inserted_at);

postgres=# CREATE TABLE students_09_2023 PARTITION OF students
FOR VALUES FROM ('2023-09-01 00:00:000') TO ('2023-09-30 23:59:999'); 

postgres=# CREATE TABLE students_10_2023 PARTITION OF students
FOR VALUES FROM ('2023-10-01 00:00:000') TO ('2023-10-31 23:59:999'); 

<...>

range partitioning setup

What if the source table already 
defines PK, but it’s not my desired 
partition key?

Migrate PRIMARY KEY to a 
composite key , ex:(id, 
inserted_at)
● Beware of UPSERTs, which 

need to provide all primary 
key fields

● In this case, id  is no longer 
individually UNIQUE



Rapid Fire Gotchas
● RANGE & LIST partitioning:

○ DEFAULT partition – feature or bug?

● HASH partitioning:

○ Range queries (i.e., WHERE <partition_key> BETWEEN x, y )  
can’t use partition pruning

○ Partition count cannot be changed without re-partitioning

● Logical replication/CDC

○ Before PG13, logical replication was not supported for partitioned tables

○ publish_via_partition_root



4. Partitioning an 
existing table 



Why is this a challenge?
● Typically, existing tables are migrated to be partitioned, rather 

than starting as partitioned
● Declarative partitioning doesn’t support “ALTER TABLE … 

PARTITION BY” syntax, so this migration must be performed 
manually

Four examples, four (of many!) ways to partition:
1) Use Case #1: offline migration
2) Use Case #2: online migration (duplicating disk space)
3) Use Case #3: online migration (no duplicated disk space)
4) Use Case #4: online migration (logical replication)



‼ Disclaimer
There are MANY ways to partition tables. This talk is relatively 
technology agnostic – so examples focus on “native Postgres” 
methods which I’ve used, rather than diving deep into specific 
extensions

● pg_partman
● pgslice
● pg_party

Extensions which provide 
various partitioning 
migration utilities, among 
other functionality



Use Case #1: Offline migration
At the start of each school year, admins insert ~500K 
students for the new grad_year, and delete ~500K 
newly-graduated students.

 
● 100GB table students serves live traffic

○ 90% read, 10% insert/update/delete
● Traffic is concentrated during 9am-5pm M-F
● School pays teachers really well, no DBA budget

Constraints:
● ✅ <=3 hours scheduled downtime acceptable
● ✅ 200GB disk space available

Desired Schema

CREATE TABLE students(

  <...>

) PARTITION BY 
LIST(grad_year);



–- Step #1: Create a new, list partitioned table with the same schema & 
indexes as “students”, and create partitions for the empty table

postgres=# CREATE TABLE s_v2(
  id        BIGINT NOT NULL,
  <...>
  grad_year INTEGER NOT NULL,
  PRIMARY KEY(id, grad_year)
) PARTITION BY LIST(grad_year);

postgres=# CREATE TABLE students_2014 PARTITION OF s_v2 FOR VALUES IN 
(2014);
 
<...>

postgres=# CREATE TABLE students_2023 PARTITION OF s_v2 FOR VALUES IN 
(2023);

postgres=# CREATE INDEX students__grad_year ON s_v2 (grad_year);



–- Step #2: Manually insert the data, though your preferred means:
- - INSERT - (example below), very large insert, unbatched
- - pg_partman1 - this is a great place to use pg_partman’s

 partman.partition_data_proc() function, as it
 will batch INSERTs natively

- - pg_dump/load

postgres=# BEGIN;

postgres=# INSERT INTO s_v2 (
SELECT * FROM students 

);

<...>
1https://github.com/pgpartman/pg_partman/blob/master/doc/pg_partman_howto.md#

offline-partitioning



–- Step #3: Within in the same transaction, “swap” the two tables

<...>

postgres=# ALTER TABLE students RENAME TO students_archived;

postgres=# ALTER TABLE s_v2 RENAME TO students;

postgres=# COMMIT;

–- Step #5: Now back online, drop the unpartitioned 
“students_archived” table, freeing up disk space

postgres=# DROP TABLE students_archived;



Use Case #2: Online migration, 
duplicating tables

The school district is running into issues with DB 
maintenance time (vacuum, reindexing, etc), and 
expects 2x data growth this year due to districts 
merging. Read queries filters vary significantly.

● 300GB table students serves live traffic
○ 60% read, 30% insert/update/delete

● Traffic is evenly distributed throughout the day

Constraints:
● ⚠ <=3m downtime acceptable
● ✅ 500GB disk space available 

Desired Schema

CREATE TABLE students(
  id uuid PRIMARY KEY,

  <...>

) PARTITION BY
HASH(id);



–- Step #1: Create a new, hash partitioned table with the same 
schema as “students”, and create partitions for the empty table

postgres=# CREATE TABLE s_v2 (
LIKE students
INCLUDING DEFAULTS INCLUDING INDEXES INCLUDING CONSTRAINTS

) PARTITION BY HASH(id);

postgres=# CREATE TABLE students_0 PARTITION OF s_v2 FOR VALUES WITH 
(MODULUS 10, REMAINDER 0);

<...>

postgres=# CREATE TABLE students_9 PARTITION OF s_v2 FOR VALUES WITH 
(MODULUS 10, REMAINDER 9);



–- Step #2: Create a plpgsql function returning a trigger which duplicates 
incoming INSERT/UPDATE/DELETE operations to s_v2

postgres=# CREATE OR REPLACE FUNCTION duplicate_to_partitioned_table()
RETURNS TRIGGER AS
$$
BEGIN

<...>
END;
$$ LANGUAGE PLPGSQL;

–- Step #3: Create a trigger, so the function is called after 
INSERT/UPDATE/DELETE on the “students” table.

postgres=# CREATE TRIGGER duplicate_to_partitioned_table_trigger
AFTER INSERT OR UPDATE OR DELETE ON students
FOR EACH ROW EXECUTE PROCEDURE duplicate_to_partitioned_table();

https://bit.ly/data-duplication-partitioning-gist



–- Step #4: Run a historical backfill for data from “students”, 
inserting into s_v2 in batches. When primary key conflicts are 
found, do nothing.

–- Step #5: Swap the tables in place, then drop the old table

postgres=# BEGIN;

ALTER TABLE students RENAME TO students_archived;

ALTER TABLE s_v2 RENAME TO students;

COMMIT;

postgres=# DROP TABLE students_archived;



Use Case #3: Online migration, no table 
duplication

The school district is running into issues with DB 
maintenance time (vacuum, reindexing, etc), and 
expects 2x data growth this year due to districts 
merging. Read queries filters vary significantly.

● 300GB table students serves live traffic
○ 60% read, 30% insert/update/delete

● Traffic is evenly distributed throughout the day

Constraints:
● ⚠ <=3m downtime acceptable
● ⚠ 100GB disk space available 

Desired Schema

CREATE TABLE students(

  <...>

) PARTITION BY
HASH(id);

Not enough disk space available on 
the server to duplicate the dataset



–- Step #1: Create a new, hash partitioned table with the same 
schema as “students”, and create partitions for the empty table

postgres=# CREATE TABLE s_v2 (
LIKE students
INCLUDING DEFAULTS INCLUDING INDEXES INCLUDING CONSTRAINTS

) PARTITION BY HASH(id);

postgres=# CREATE TABLE students_0 PARTITION OF s_v2 FOR VALUES WITH 
(MODULUS 10, REMAINDER 0);

<...>

postgres=# CREATE TABLE students_9 PARTITION OF s_v2 FOR VALUES WITH 
(MODULUS 10, REMAINDER 9);



–- Step #2: Create a plpgsql function returning a trigger which:
   - ON INSERT: inserts only to new table
   - ON DELETE: deletes from both new & old table
   - ON UPDATE: deletes from old table, inserts or updates new table

postgres=# CREATE OR REPLACE FUNCTION migrate_to_partitioned_table()
RETURNS TRIGGER AS
$$
BEGIN

<...>

END;
$$ LANGUAGE PLPGSQL;

https://bit.ly/data-migration-partitioning-blog 1

1 “Partitioning a large table without a long-running lock”, 2ndQuadrant (Andrew Dunstan)

https://bit.ly/data-migration-partitioning-blog


–- Step #3: Replace the old “students” table with a view which UNIONs the old  
and new table results together. Then create a trigger which calls 
migrate_to_partitioned_table() *INSTEAD OF* (not after) INSERT/UPDATE/DELETE to 
the “students” table.

postgres=# BEGIN;

    ALTER TABLE students RENAME TO students_archived;

    CREATE VIEW students AS
SELECT id, data FROM students
UNION ALL
SELECT id, data FROM s_v2

;

    CREATE TRIGGER migrate_to_partitioned_table_trigger
    INSTEAD OF INSERT OR UPDATE OR DELETE on students
    FOR EACH ROW
    EXECUTE FUNCTION migrate_to_partitioned_table();

COMMIT;



–- Step #4: Run a backfill to insert rows from the old table to the new, 
partitioned table. (Example available in previous 2ndQuadrant blog link.)

–- Step #5: Drop the view and migration function. Rename the new, 
partitioned table to be “students”. In a separate transaction, drop the old 
“students_archived” table

postgres=# BEGIN;
    DROP VIEW students;
    DROP FUNCTION migrate_to_partitioned_table();
    ALTER TABLE s_v2 RENAME TO students;
COMMIT;

postgres=# DROP TABLE students_archived;



Use Case #4: Logical replication 🚀📈 
For reasons indecipherable, the students table is >1TB. The 
district expects to regularly partition more tables, so they want 
the process to be repeatable. Apps connect to the PGBouncer 
DNS name  (i.e, students-pgbouncer.io:5432) rather 
than the “real” host name.

● 1.2TB table students serves live traffic
○ 80% read, 20% insert/update/delete

● Traffic is evenly distributed throughout the day

Constraints:
● ⚠ <=3m write downtime acceptable
● ⚠ 100GB disk space available
● ⚠ Task must be easily repeatable

Desired Schema

CREATE TABLE students(

  <...>

) PARTITION BY
RANGE(inserted_at);



Use Case #4: Logical replication 🚀📈 
TLDR;
1) Ensure the source students table has a primary key, and don’t 

use SEQUENCEs 
2) Set up a new, fresh database instance, and create the desired 

partitioned schema & database roles there
3) Create a PUBLICATION for the table(s) on the source DB
4) Create a SUBSCRIPTION on the new destination DB
5) Wait for logical replication to catch up

a) Ensure no DDL migrations occur
6) Migrate any replica/explicitly read-only connections from the 

source to the destination
7) Cut off writes to the primary by scaling down PGBouncer to 0
8) Check replication slot lag/LSN to ensure all data is transferred
9) Re-configure PGBouncer to point at the new, destination DB

10) Scale PGBouncer back up

Writes 
Offline



Use Case #4: Logical replication 🚀📈 

students_p1

students_p2

students_p3

students
rep’n slot

Application 
Backends Connection Pooler

(PGBouncer)

Application 
BackendsApplication 

Backends

READS
WRITES

Step 1



Use Case #4: Logical replication 🚀📈 

students_p1

students_p2

students_p3

students
rep’n slot

Application 
Backends Connection Pooler

(PGBouncer)

Application 
BackendsApplication 

Backends

WRITES
READS

Step 2



Use Case #4: Logical replication 🚀📈 

students_p1

students_p2

students_p3

students
rep’n slot

Application 
Backends Connection Pooler

(PGBouncer)

Application 
BackendsApplication 

Backends

READS

Step 3

Write Downtime
(check LSN lag)



Use Case #4: Logical replication 🚀📈 

students_p1

students_p2

students_p3

students
rep’n slot

Application 
Backends Connection Pooler

(PGBouncer)

Application 
BackendsApplication 

Backends

READS
WRITES

Step 4



Use Case #4: Logical replication 🚀📈 
TLDR;
1) Set up a new, fresh database instance, and create the desired 

partitioned schema & identical roles there
a) Schema may contain JUST “students”, or all tables in the current database

2) Create a PUBLICATION for the table(s) on the source DB
3) Create a SUBSCRIPTION on the new destination DB
4) Wait for logical replication to catch up
5) Migrate any replica/explicitly read-only connections from the 

source to the destination
6) Cut off writes to the primary by scaling down PGBouncer to 0
7) Check replication slot lag/LSN to ensure all data is transferred
8) Re-configure PGBouncer to point at the new, destination DB
9) Scale PGBouncer back up

10) Profit

Offline

But wait… do I even need to publish 
to a new instance? Can I just 

logically replicate from “students” to 
a second, partitioned table in the 

same DB/instance?



Use Case #4: Logical replication 🚀📈 
TLDR;
1) Set up a new, fresh database instance, and create the desired 

partitioned schema & identical roles there
a) Schema may contain JUST “students”, or all tables in the current database

2) Create a PUBLICATION for the table(s) on the source DB
3) Create a SUBSCRIPTION on the new destination DB
4) Wait for logical replication to catch up
5) Migrate any replica/explicitly read-only connections from the 

source to the destination
6) Cut off writes to the primary by scaling down PGBouncer to 0
7) Check replication slot lag/LSN to ensure all data is transferred
8) Re-configure PGBouncer to point at the new, destination DB
9) Scale PGBouncer back up

10) Profit

Offline

But wait… do I even need to publish 
to a new instance? Can I just 

logically replicate from “students” to 
a second, partitioned table in the 

same DB/instance?

Schema, table, and columns names 
must be the same on the PUBLISHER 
and SUBSCRIBER. 
● If instance stays the same, DB 

name must change
● Changing instances == “free” 

upgrade 󰤈



4. Maintenance, 
Configuration, 

Observability, etc



Maintenance
● Regular creation of new partitions

○ RANGE: pg_partman
○ LIST: pg_partman, migrations

pg_partman:

An extension to create and manage both time-based and 
number-based table partition sets.

●Automatically create or detach/delete old partitions
●CALL partman.run_maintenance_proc(<...>);



Observability

Monitoring/alerting:
● Partitions are created/deleted by pg_partman as expected

○ Alert with lack of data, not just explicit failures
● Partition size (skew) – especially for list partitions

auto_explain:
● Dynamically help detect slow query plans, likely not including 

partition key



Configuration
Any configuration changes are made on the basis of table count 
growing. The fact that the tables are partitions isn’t important. 

autovacuum_max_workers (default=3)
● Consider increasing, based on on resource usage



Organizational Support

Building an understanding of partitioning & its benefits/constraints 
across the engineering organization. EX:

● Internal/open source blog posts
● Git hooks linking documentation for schema migrations or new queries

TLDR; 
● How can your partitioned table(s) stay performant and well-understood 

going forward?
● How can you enable engineers to write partitioning-aware queries?



Thank you!

Chelsea Dole

cdole@brex.com
https://www.linkedin.com/in/chelsea-dole/

mailto:cdole@brex.com

