It's Not You, It's Me- Your Tuples:

BREAKING UP
MASSIVE TABLES via
PARTITIONING

Chelsea Dole

. Database Engineer, financial services
. Organizer, PGSummit US (PGConf NYC)

Previously...

-> Staff Database Engineer, Brex
= Data Engineer, Coffee Meets Bagel Chelsea Dole
—> Etc

Outline

1. What is partitioning?

Partitioning in Postgres

2
3. Why partition (or not)?
4.
5

How to partition an existing table

Maintenance, configuration, & observability

1. What is
partitioning?

What is partitioning?

Splitting 1 larger, logical table into n smaller, physical tables

55
. 5
o 5
o 5
5 5
o 5
3 .
o o
. .
5 o
. v A

https://www.postgresql.org/docs/current/ddl-partitioning.html

What is partitioning?

Splitting 1 larger, logical table into n smaller, physical tables ™

: =0
c°o°0
o S
. o .
o o
. - .
o 5
. - .
. 5
. - ..
o
. . .
. 5
. - .
. o
. - .
o
. -
“ ' ‘A

https://www.postgresql.org/docs/current/ddl-partitioning.html

SELECT 1id, full name FROM students WHERE id = 1;

v | students

: —
. .
. .
. .
. - -
. .
: .
. * .
. - .
. .
. - .
. .
. - .
i .
X .
V'S \ J ‘A

Sharding vs partitioning

Sharding: Partitioning:

n nodes, 1table/node 1 node, n tables/node

Partitioning in Postgres

e PG 9.6: partitioning via “table inheritance” Difficult
o Manual creation, trigger-based INSERTSs setup, bad
performance

e PG 10: declarative partitioning

o CREATE TABLE .. PARTITION BY .. Eas}’?/ntax,
o INSERT “tuple routing” SELECT pruning asic features
e PGITI:

Solid features,
o Default partition, hash type, UPDATE “tuple routing”, broadly

partition wise JOIN, & more usable

Partitioning in Postgres

e PG 12 - PG18+:

©)

©)
©)
©)
©)

ATTACH/DETACH partition concurrently
Partition pruning improvements

Logical replication for partitioned tables
SPLIT/MERGE partitions

& much more

\

v

Mature,
first-class
Postgres
feature

2. Partitioning
methods

1. Range
2. List
3. Hash

Partition key:

How is data split
into multiple tables?

1. Range partitioning

e Partitions contain values within a predefined min/max

e Most common & useful method of partitioning

Examples:
e Time range data, mostly querying recent data

e Dashboard of “events’, preloading in chronological order

postgres=# CREATE TABLE students (
id BIGINT NOT NULL,
school id VARCHAR NOT NULL,
inserted at TIMESTAMPTZ NOT NULL,
PRIMARY KEY (1d, inserted at)

) PARTITION BY RANGE(inserted_at);

postgres=# CREATE TABLE students 09 2025 PARTITION OF students
FOR VALUES FROM ('2025-09-01 00:00:00') TO ('2025-09-30
23:59:99");

postgres=# CREATE TABLE students 10 2025 PARTITION OF students
FOR VALUES FROM ('2025-10-01 00:00:00"') TO ('2025-10-31
23:59:99");

2. List partitioning

e Partitioning based on explicit column value options

e Low cardinality values, skewed partition table size

Examples:
e Data separated by user region (EX: “eu”, “apac’, etc)
e Data may be bulk loaded/dropped by list partition

e New values for partition key do not appear dynamically

postgres=# CREATE TABLE students (
id BIGINT NOT NULL,
district name VARCHAR NOT NULL,
inserted at TIMESTAMPTZ NOT NULL,
PRIMARY KEY (id, district name)

) PARTITION BY LIST(district name);

postgres=# CREATE TABLE s nyc PARTITION OF students
FOR VALUES IN ('New York City');

postgres=# CREATE TABLE s rochester PARTITION OF students
FOR VALUES IN ('Rochester');

postgres=# CREATE TABLE s default PARTITION OF students DEFAULT;

3. Hash partitioning

e Hashed column value, defining MODULUS &
REMAINDER

e Distributes values evenly

Examples:

e Partitioning is necessary for table maintenance/health, but there
is no natural partition key

postgres=# CREATE TABLE students (

1d BIGINT NOT NULL,
district name VARCHAR NOT NULL,
inserted at TIMESTAMPTZ NOT NULL,

PRIMARY KEY (1d)
) PARTITION BY HASH (id) ;

postgres=# CREATE TABLE students 0 PARTITION OF students FOR
VALUES WITH (MODULUS 3, REMAINDER O0);

postgres=# CREATE TABLE students 1 PARTITION OF students FOR
VALUES WITH (MODULUS 3, REMAINDER 1);

postgres=# CREATE TABLE students 2 PARTITION OF students FOR
VALUES WITH (MODULUS 3, REMAINDER 2);

3. Why partition
(or not)?

Direct impact Potential impact

e Query performance
improvements

e Bloat reduction

e Better cache
efficiency

Less bloat — query performance
Up-to-date VisibilityMap —
fewer heap fetches during scans

Faster index create/rebuild
More recent xmin horizon

Fresh data in shared buffers
— query performance
Better cache efficiency

Bulk DELETE/INSERT
Lower disk utilization

Partitioning has so many
benefits! | should | just
partition everything!

Partitioning has so many
benefits! | should | just
partition everything!

—\\I.WA

Downsides of partitioning

e Possible negative impact on performance

e Stronger Postgres knowledge required from app
developers

e Advanced features — advanced expertise
o Knowledge of “gotchas”

When is partitioning “worth it"?

e Table size >=100GB (at least) W

e Table size > physical memory of the
server

& My rules-of-thumb

e Typically the best ROI
e Ifyou have a “natural” range partition key or want to “expire” old
data

e Ifyou need to regularly bulk DELETE or INSERT data for a group

e Partitioning is needed for maintenance reasons, but no natural PK
e No plans to “expire” partitions

o (Knowledge of “gotchas” “

The Big Gotcha

Table primary keys & unique constraints must include the
partition key

range partitioning setup l X

postgres=# CREATE TABLE students (
id BIGINT NOT NULL,
school id VARCHAR NOT NULL,
inserted at TIMESTAMPTZ NOT NULL,
PRIMARY KEY (id, inserted at)

) PARTITION BY RANGE (inserted at);

& Rapid Fire Gotchas

e DEFAULT partition
e HASH partitioning

o Range queries (i.e., NHERE <partition key>
BETWEEN x, y)can'tuse partition pruning

o Partition count cannot be changed

e Logical replication: publish via partition root

4. Partitioning an
existing table

Why is this a challenge?

e Tables are typically partitioned retroactively

e No support for “ALTER TABLE .. PARTITION BY”

'l Disclaimer

There are MANY ways to partition tables. This talk focuses on
native Postgres, not extensions.

Pg_partman
pgslice
pg-_party
pglogical

oo
=S
oo

Case Study: NY Dept of Education

Table size (GB)

Query patterns

o Read vs write
o Bulk load/delete
o Filters

Maintenance window length
Disk availability
Budget

Use Case #1: Offline migration

180GB table
o 90% reads

o 10% writes

e Frequent bulk load/delete by
district name

e Traffic during school hours

e Low DBA budget (teachers paid well)

Constraints:
e W <=3 hours maintenance window

e W 300GB disk space available

Desired Schema X

CREATE TABLE students (

<...>

) PARTITION BY
LIST (district name);

—— Step #1: Create a LIST partitioned table & partitions.

postgres=# CREATE TABLE students v2 (
id BIGINT NOT NULL,
district_name VARCHAR NOT NULL,
inserted_at TIMESTAMPTZ NOT NULL,
PRIMARY KEY (id, district name)

) PARTITION BY LIST(district_name);

postgres=# CREATE TABLE s nyc PARTITION OF students v2
FOR VALUES IN ('New York City');

<...>

postgres=# CREATE INDEX students district name ON students v2
(district name) ;

—— Step #2: Manually insert the data
- INSERT (example below), single or batched
- pg partman’
- pg dump/load

postgres=# BEGIN;

INSERT INTO students_vZ (
SELECT * FROM students

) ;

1https://github.com/pgpa rtman/pg_partman/blob/master/doc/pg_partman_howto.md#
offline-partitioning

—— Step #3: Within in the same transaction, “swap” the two
tables

ALTER TABLE students RENAME TO students old;
ALTER TABLE students_vZ RENAME TO students;

postgres=# COMMIT;

—— Step #4: Drop “students old”

postgres=# DROP TABLE students old;

Use Case #2: Online migration,

400GB table duplicating tables
o 60% reads

o 40% writes

Desired Schema X
e Traffic distributed roughly 24/7 CR?ﬁTiigﬁiEP;;igit;éY,
e District has issues with maintenance runtime
e 2x data growth expected this year, and query Seee”

patterns/filters are variable) PARTITION BY

HASH (id) ;

Constraints:

e A\ <=3m downtime acceptable
e W 600GB disk space available

—— Step #1: Create a HASH partitioned table & partitions.

postgres=# CREATE TABLE students v2 (

LIKE students

INCLUDING DEFAULTS INCLUDING INDEXES INCLUDING CONSTRAINTS
) PARTITION BY HASH (id) ;

postgres=# CREATE TABLE s 0 PARTITION OF students v2 FOR VALUES
WITH (MODULUS 10, REMAINDER O) ;

<. o002

postgres=# CREATE TABLE s 9 PARTITION OF students v2 FOR VALUES
WITH (MODULUS 10, REMAINDER 9);

-— Step #2: Create a function returning a trigger to duplicate
incoming INSERT/UPDATE/DELETE/MERGE operations to students v2

postgres=# CREATE OR REPLACE FUNCTION duplicate dml ()

RETURNS TRIGGER AS)
$S
BEGIN
/bty date-dupicaon-pariioing-gist.
END;

$$ LANGUAGE PLPGSQL; _J

-— Step #3: Create a trigger, so the function is called after
INSERT/UPDATE/DELETE/MERGE on the “students” table.

postgres=#

CREATE TRIGGER duplicate dml trigger
AFTER INSERT OR UPDATE OR DELETE ON students

FOR EACH ROW EXECUTE PROCEDURE

partition migrate () ;

—— Step #4: Copy all data from “students” to “students v2” 1in
batches. On PK conflict, do nothing.

—— Step #5: Once backfill is complete, “swap” the two tables & drop
the old table.

postgres=#

BEGIN;
ALTER TABLE students RENAME TO students old;
ALTER TABLE student v2Z RENAME TO students;
COMMIT;

postgres=# DROP TABLE students archived;

Use Case #3: Online migration,
no table duplication

Desired Schema

X

<...>

) PARTITION BY
HASH (id) ;

Constraints:
e A\ <=3m maintenance window

Doesn't have 2x disk space
o A\ 100CB disk space available ve 2x disk sp

CREATE TABLE students (

—-— Step #1: Create a HASH partitioned table & partitions.

postgres=# CREATE TABLE students v2 (

LTKE students
INCLUDING DEFAULTS INCLUDING INDEXES INCLUDING CONSTRAINTS

) PARTITION BY HASH (id) ;

postgres=# CREATE TABLE s 0 PARTITION OF students v2 FOR VALUES WITH
(MODULUS 10, REMAINDER O0) ;

Koo o

postgres=# CREATE TABLE s 9 PARTITION OF students v2 FOR VALUES WITH
(MODULUS 10, REMAINDER 9);

—-— Step #2: Create a function returning a trigger:
— ON INSERT: insert only to new table
- ON DELETE: delete from both new & old table
- ON UPDATE: delete from old table, upsert to new table

postgres=# CREATE OR REPLACE FUNCTION partition migrate ()

RETURNS TRIGGER AS

$$
BEGIN . . . o .
< > https://bit.ly/data-migration-partitioning-blog"

END;
$S LANGUAGE PLPGSQL;

r “Partitioning a large table without a long-running lock’, 2ndQuadrant (Andrew Dunstan)

https://bit.ly/data-migration-partitioning-blog

—-— Step #3: Replace “students” with a UNION view of both tables. Create a
trigger which calls partition migrate () in Iieu of INSERT/UPDATE/DELETE.

postgres=# BEGIN;
ALTER TABLE students RENAME TO students old;

CREATE VIEW students AS
SELECT 1d, <data> FROM students old
UNION ALL
SELECT 1d, <data> FROM students v2

CREATE TRIGGER partition migrate trigger
INSTEAD OF INSERT OR UPDATE OR DELETE on students
FOR EACH ROW

EXECUTE FUNCTION partition migrate();

COMMIT;

—— Step #4: Copy all data from “students” to "“students v2” in batches

—— Step #5: Drop the view and migration function. Rename the new,
partitioned table to be “students”. Drop “students old”.

postgres=#

BEGIN;
DROP VIEW students;
DROP FUNCTION partition migrate () ;

ALTER TABLE students v2Z2 RENAME TO students;
COMMIT;

postgres=# DROP TABLE students old;

. Use Case #4: Logical
4TB table . .
e 80% reads replication # |4

e 20% writes

e Traffic distributed roughly 24/7
e Most queries filter by grad date

e High DBA budget, and partitioning process
must be repeatable

Desired Schema X

CREATE TABLE students (

<...>
Constraints:
e A\ <=1m maintenance window E){AEZQET(?TIONtBE .
0 5 inserce a H
e A\ 300GB disk space available -

e A\ Task must be easily repeatable

Use Case #4: Logical replication # ¥4

WRITES

Use Case #4: Logical replication # ¥4

WRITES

Use Case #4: Logical replication # ¥4

publication:

—
publish via partition_root

Use Case #4: Logical replication # ¥4

replication slot

Use Case #4: Logical replication # ¥4

replication slot

Use Case #4: Logical replication # ¥4

replication slot

Use Case #4: Logical replication #

application_name, pg current _wal lsn(),
replay_1sn, pg wal 1lsn diff(pg _current_wal 1lsn(),
replay lsn)::bigint pg stat replication;

Use Case #4: Logical replication # ¥4

Use Case #4: Logical replication #

Primary key, large object (10), unlogged tables, etc
Destination table partitioned

Publication (publish via partition root) & subscription
No schema changes/DDL

Sync SEQUENCES, refresh MATERIALIZED VIEWS
Disable subscription

Verify LSN convergence

CNAME/config propagation

4. Maintenance,

Configuration,
& Observability

Maintenance

e Regular creation of new partitions

pPg_partman:

Automatically creates time/number-based partition sets, or
detach/delete old partitions
®CALL partman.run maintenance proc(<...>);

Observability

Monitoring/alerting:
e Partitions are created/deleted by pg partman as expected
e Partition size (skew)

auto explain:
e Dynamically help detect slow query plans

Configuration

Partitioned tables are still just “tables”

autovacuum max workers (default=3)
e Considerincreasing, based on on resource usage

Organizational Support

Build an understanding of partitioning & its benefits/constraints

TLDR;
e How can your partitioned table(s) stay performant and
well-understood going forward?
e How can you enable engineers to write partitioning-aware queries?

chelseadole@gmail.com
chelseadole.com

mailto:chelseadole@gmail.com

