
It’s Not You, It’s Me Your Tuples:

BREAKING UP
MASSIVE TABLES via
PARTITIONING

Chelsea Dole

● Database Engineer, financial services

● Organizer, PGSummit US (PGConf NYC)

Previously…
➔ Staff Database Engineer, Brex
➔ Data Engineer, Coffee Meets Bagel
➔ Etc

Chelsea Dole

Outline

1. What is partitioning?

2. Partitioning in Postgres

3. Why partition (or not)?

4. How to partition an existing table

5. Maintenance, configuration, & observability

1. What is
partitioning?

What is partitioning?
Splitting 1 larger, logical table into n smaller, physical tables [1]

students vs

students_p1 students_p2 students_p3

students

https://www.postgresql.org/docs/current/ddl-partitioning.html

What is partitioning?
Splitting 1 larger, logical table into n smaller, physical tables [1]

students vs

students_p1 students_p2 students_p3

students

https://www.postgresql.org/docs/current/ddl-partitioning.html

SELECT id, full_name FROM students WHERE id = 1;

students vs

students_p1 students_p2 students_p3

students

Sharding vs partitioning

students

students

students

students_p1

students_p2

students_p3

Sharding:

n nodes, 1 table/node

Partitioning:

1 node, n tables/node

students

students

students

students_p1

students_p2

students_p3

Partitioning in Postgres
● PG 9.6: partitioning via “table inheritance”

○ Manual creation, trigger-based INSERTs

● PG 10: declarative partitioning
○ CREATE TABLE … PARTITION BY …
○ INSERT “tuple routing”, SELECT pruning

● PG 11:
○ Default partition, hash type, UPDATE “tuple routing”,

partition wise JOIN, & more

Difficult
setup, bad
performance

Easy syntax,
basic features

Solid features,
broadly
usable

Partitioning in Postgres

● PG 12 - PG18+:
○ ATTACH/DETACH partition concurrently
○ Partition pruning improvements
○ Logical replication for partitioned tables
○ SPLIT/MERGE partitions
○ & much more

Mature,
first-class
Postgres
feature

2. Partitioning
methods

1. Range
2. List
3. Hash

Partition key:

How is data split
into multiple tables?

1. Range partitioning

● Partitions contain values within a predefined min/max

● Most common & useful method of partitioning

Examples:

● Time range data, mostly querying recent data

● Dashboard of “events”, preloading in chronological order

postgres=# CREATE TABLE students (
 id BIGINT NOT NULL,
 school_id VARCHAR NOT NULL,
 inserted_at TIMESTAMPTZ NOT NULL,
 PRIMARY KEY(id, inserted_at)
) PARTITION BY RANGE(inserted_at);

postgres=# CREATE TABLE students_09_2025 PARTITION OF students
FOR VALUES FROM ('2025-09-01 00:00:00') TO ('2025-09-30
23:59:99');

postgres=# CREATE TABLE students_10_2025 PARTITION OF students
FOR VALUES FROM ('2025-10-01 00:00:00') TO ('2025-10-31
23:59:99');

2. List partitioning

● Partitioning based on explicit column value options

● Low cardinality values, skewed partition table size

Examples:

● Data separated by user region (EX: “eu”, “apac”, etc)

● Data may be bulk loaded/dropped by list partition

● New values for partition key do not appear dynamically

postgres=# CREATE TABLE students (
 id BIGINT NOT NULL,
 district_name VARCHAR NOT NULL,
 inserted_at TIMESTAMPTZ NOT NULL,
 PRIMARY KEY(id, district_name)
) PARTITION BY LIST(district_name);

postgres=# CREATE TABLE s_nyc PARTITION OF students
FOR VALUES IN ('New York City');

postgres=# CREATE TABLE s_rochester PARTITION OF students
FOR VALUES IN ('Rochester');

postgres=# CREATE TABLE s_default PARTITION OF students DEFAULT;

3. Hash partitioning

● Hashed column value, defining MODULUS &
REMAINDER

● Distributes values evenly

Examples:

● Partitioning is necessary for table maintenance/health, but there
is no natural partition key

postgres=# CREATE TABLE students (
 id BIGINT NOT NULL,
 district_name VARCHAR NOT NULL,
 inserted_at TIMESTAMPTZ NOT NULL,
 PRIMARY KEY(id)
) PARTITION BY HASH(id);

postgres=# CREATE TABLE students_0 PARTITION OF students FOR
VALUES WITH (MODULUS 3, REMAINDER 0);

postgres=# CREATE TABLE students_1 PARTITION OF students FOR
VALUES WITH (MODULUS 3, REMAINDER 1);

postgres=# CREATE TABLE students_2 PARTITION OF students FOR
VALUES WITH (MODULUS 3, REMAINDER 2);

3. Why partition
(or not)?

Faster, parallelizable
autovacuum

Faster, parallelizable
index maintenance

[Range]
Natural page ordering

Safe & easy
bulk data deletion

● Query performance
improvements

● Bloat reduction
● Better cache

efficiency

Direct impact Potential impact

Smaller,
partitioned

tables

Faster, parallelizable
autovacuum

Faster, parallelizable
index maintenance

[Range]
Natural page ordering

Safe & easy
bulk data deletion

● Less bloat → query performance
● Up-to-date VisibilityMap →

fewer heap fetches during scans

● Bulk DELETE/INSERT
● Lower disk utilization

● Fresh data in shared_buffers
→ query performance

● Better cache efficiency

● Faster index create/rebuild
● More recent xmin horizon

Smaller,
partitioned

tables

Partitioning has so many
benefits! I should I just
partition everything!

Partitioning has so many
benefits! I should I just
partition everything!

Downsides of partitioning

● Possible negative impact on performance

● Stronger Postgres knowledge required from app
developers

● Advanced features → advanced expertise
○ Knowledge of “gotchas”

When is partitioning “worth it”?

Industry rule-of-thumb
● Table size >=100GB (at least) ⭐

Postgres docs
● Table size > physical memory of the

server

👍 My rules-of-thumb
RANGE partitioning
● Typically the best ROI
● If you have a “natural” range partition key or want to “expire” old

data

LIST partitioning
● If you need to regularly bulk DELETE or INSERT data for a group

HASH partitioning
● Partitioning is needed for maintenance reasons, but no natural PK
● No plans to “expire” partitions

Downsides of partitioning

● Possible negative impact on performance

● Stronger Postgres knowledge required from app
developers

● Advanced features → advanced expertise
○ Knowledge of “gotchas”

The Big Gotcha

Table primary keys & unique constraints must include the
partition key

ERROR: insufficient columns in PRIMARY KEY constraint
definition

PRIMARY KEY constraint on table "students" lacks
column "inserted_at" which is part of the partition
key.

postgres=# CREATE TABLE students (
 id BIGINT NOT NULL,
 school_id VARCHAR NOT NULL,
 inserted_at TIMESTAMPTZ NOT NULL,
 PRIMARY KEY(id, inserted_at)
) PARTITION BY RANGE(inserted_at);

range partitioning setup

What if the source table
already defines PK, but it’s not
my desired partition key?

Migrate PRIMARY KEY to a
composite key

● Beware of UPSERTs
● id no longer UNIQUE

🔥 Rapid Fire Gotchas

● DEFAULT partition

● HASH partitioning

○ Range queries (i.e., WHERE <partition_key>
BETWEEN x, y) can’t use partition pruning

○ Partition count cannot be changed

● Logical replication: publish_via_partition_root

4. Partitioning an
existing table

Why is this a challenge?

● Tables are typically partitioned retroactively

● No support for “ALTER TABLE … PARTITION BY”

‼ Disclaimer

There are MANY ways to partition tables. This talk focuses on
native Postgres, not extensions.

● pg_partman
● pgslice
● pg_party
● pglogical

Extensions which provide
utilities relevant to partitioning
methods

🏫 Case Study: NY Dept of Education

● Table size (GB)
● Query patterns

○ Read vs write
○ Bulk load/delete
○ Filters

● Maintenance window length
● Disk availability
● Budget

Use Case #1: Offline migration
180GB table
○ 90% reads

○ 10% writes

● Frequent bulk load/delete by
district_name

● Traffic during school hours
● Low DBA budget (teachers paid well)

Constraints:
● ✅ <=3 hours maintenance window
● ✅ 300GB disk space available

Desired Schema

CREATE TABLE students(

 <...>

) PARTITION BY
LIST(district_name);

–- Step #1: Create a LIST partitioned table & partitions.

postgres=# CREATE TABLE students_v2 (
 id BIGINT NOT NULL,
 district_name VARCHAR NOT NULL,
 inserted_at TIMESTAMPTZ NOT NULL,
 PRIMARY KEY(id, district_name)
) PARTITION BY LIST(district_name);

postgres=# CREATE TABLE s_nyc PARTITION OF students_v2
FOR VALUES IN ('New York City');

<...>

postgres=# CREATE INDEX students__district_name ON students_v2
(district_name);

–- Step #2: Manually insert the data
- - INSERT (example below), single or batched
- - pg_partman1

- - pg_dump/load

postgres=# BEGIN;

INSERT INTO students_v2 (
SELECT * FROM students

);

1https://github.com/pgpartman/pg_partman/blob/master/doc/pg_partman_howto.md#
offline-partitioning

–- Step #3: Within in the same transaction, “swap” the two
tables

ALTER TABLE students RENAME TO students_old;
ALTER TABLE students_v2 RENAME TO students;

postgres=# COMMIT;

–- Step #4: Drop “students_old”

postgres=# DROP TABLE students_old;

Use Case #2: Online migration,
duplicating tables● 400GB table

○ 60% reads
○ 40% writes

● Traffic distributed roughly 24/7
● District has issues with maintenance runtime
● 2x data growth expected this year, and query

patterns/filters are variable

Constraints:
● ⚠ <=3m downtime acceptable
● ✅ 600GB disk space available

Desired Schema

CREATE TABLE students(
 id bigint PRIMARY KEY,

 <...>

) PARTITION BY
HASH(id);

–- Step #1: Create a HASH partitioned table & partitions.

postgres=# CREATE TABLE students_v2 (
LIKE students
INCLUDING DEFAULTS INCLUDING INDEXES INCLUDING CONSTRAINTS

) PARTITION BY HASH(id);

postgres=# CREATE TABLE s_0 PARTITION OF students_v2 FOR VALUES
WITH (MODULUS 10, REMAINDER 0);

<...>

postgres=# CREATE TABLE s_9 PARTITION OF students_v2 FOR VALUES
WITH (MODULUS 10, REMAINDER 9);

–- Step #2: Create a function returning a trigger to duplicate
incoming INSERT/UPDATE/DELETE/MERGE operations to students_v2

postgres=# CREATE OR REPLACE FUNCTION duplicate_dml()

 RETURNS TRIGGER AS
 $$
 BEGIN

 <...>
 END;
 $$ LANGUAGE PLPGSQL;

https://bit.ly/data-duplication-partitioning-gist

–- Step #3: Create a trigger, so the function is called after
INSERT/UPDATE/DELETE/MERGE on the “students” table.

postgres=#

CREATE TRIGGER duplicate_dml_trigger
AFTER INSERT OR UPDATE OR DELETE ON students

 FOR EACH ROW EXECUTE PROCEDURE
partition_migrate();

–- Step #4: Copy all data from “students” to “students_v2” in
batches. On PK conflict, do nothing.

–- Step #5: Once backfill is complete, “swap” the two tables & drop
the old table.

postgres=#

BEGIN;
ALTER TABLE students RENAME TO students_old;
ALTER TABLE student_v2 RENAME TO students;

COMMIT;

postgres=# DROP TABLE students_archived;

Use Case #3: Online migration,
no table duplication400GB table

○ 60% reads
○ 40% writes

● Traffic distributed roughly 24/7
● District has issues with maintenance runtime
● 2x data growth expected this year, and query

patterns/filters are variable

Constraints:
● ⚠ <=3m maintenance window
● ⚠ 100GB disk space available

Desired Schema

CREATE TABLE students(

 <...>

) PARTITION BY
HASH(id);

Doesn’t have 2x disk space

–- Step #1: Create a HASH partitioned table & partitions.

postgres=# CREATE TABLE students_v2 (
LIKE students
INCLUDING DEFAULTS INCLUDING INDEXES INCLUDING CONSTRAINTS

) PARTITION BY HASH(id);

postgres=# CREATE TABLE s_0 PARTITION OF students_v2 FOR VALUES WITH
(MODULUS 10, REMAINDER 0);

<...>

postgres=# CREATE TABLE s_9 PARTITION OF students_v2 FOR VALUES WITH
(MODULUS 10, REMAINDER 9);

–- Step #2: Create a function returning a trigger:
 - ON INSERT: insert only to new table
 - ON DELETE: delete from both new & old table
 - ON UPDATE: delete from old table, upsert to new table

postgres=# CREATE OR REPLACE FUNCTION partition_migrate()

RETURNS TRIGGER AS
$$
BEGIN

<...>
END;
$$ LANGUAGE PLPGSQL;

https://bit.ly/data-migration-partitioning-blog 1

1 “Partitioning a large table without a long-running lock”, 2ndQuadrant (Andrew Dunstan)

https://bit.ly/data-migration-partitioning-blog

–- Step #3: Replace “students” with a UNION view of both tables. Create a
trigger which calls partition_migrate() in lieu of INSERT/UPDATE/DELETE.

postgres=# BEGIN;

 ALTER TABLE students RENAME TO students_old;

 CREATE VIEW students AS
SELECT id, <data> FROM students_old
UNION ALL
SELECT id, <data> FROM students_v2

;

 CREATE TRIGGER partition_migrate_trigger
 INSTEAD OF INSERT OR UPDATE OR DELETE on students
 FOR EACH ROW
 EXECUTE FUNCTION partition_migrate();

COMMIT;

–- Step #4: Copy all data from “students” to “students_v2” in batches

–- Step #5: Drop the view and migration function. Rename the new,
partitioned table to be “students”. Drop “students_old”.

postgres=#

BEGIN;
 DROP VIEW students;
 DROP FUNCTION partition_migrate();
 ALTER TABLE students_v2 RENAME TO students;
COMMIT;

postgres=# DROP TABLE students_old;

Use Case #4: Logical
replication 🚀📈

4TB table
● 80% reads
● 20% writes

● Traffic distributed roughly 24/7
● Most queries filter by grad_date
● High DBA budget, and partitioning process

must be repeatable

Constraints:
● ⚠ <=1m maintenance window
● ⚠ 300GB disk space available
● ⚠ Task must be easily repeatable

Desired Schema

CREATE TABLE students(

 <...>

) PARTITION BY
RANGE(inserted_at);

Use Case #4: Logical replication 🚀📈

students

Application
Backends CNAME

e.g. - students-haproxy.pg.io

Application
BackendsApplication

Backends

READS
WRITES

Use Case #4: Logical replication 🚀📈

students_p1

students_p2

students_p3

students

Application
BackendsApplication

BackendsApplication
Backends

READS
WRITES

CNAME
e.g. - students-haproxy.pg.io

Use Case #4: Logical replication 🚀📈

students_p1

students_p2

students_p3

students publication:
publish_via_partition_root

Application
BackendsApplication

BackendsApplication
Backends

READS
WRITES

CNAME
e.g. - students-haproxy.pg.io

Use Case #4: Logical replication 🚀📈

students_p1

students_p2

students_p3

Application
BackendsApplication

BackendsApplication
Backends

READS
WRITES

CNAME
e.g. - students-haproxy.pg.io

students pub subreplication slot

Use Case #4: Logical replication 🚀📈

students_p1

students_p2

students_p3

Application
BackendsApplication

BackendsApplication
Backends

WRITES
READS

CNAME
e.g. - students-haproxy.pg.io

students pub subreplication slot

Use Case #4: Logical replication 🚀📈

students_p1

students_p2

students_p3

Application
BackendsApplication

BackendsApplication
Backends

READS

CNAME
e.g. - students-haproxy.pg.io

students pub subreplication slot

Use Case #4: Logical replication 🚀📈

SELECT application_name, pg_current_wal_lsn(),

replay_lsn, pg_wal_lsn_diff(pg_current_wal_lsn(),

replay_lsn)::bigint FROM pg_stat_replication;

Use Case #4: Logical replication 🚀📈

students_p1

students_p2

students_p3

students

Application
BackendsApplication

BackendsApplication
Backends

READS
WRITES

CNAME
e.g. - students-haproxy.pg.io

Use Case #4: Logical replication 🚀📈
Pre-Checks
● Primary key, large object (lo), unlogged tables, etc
● Destination table partitioned

Logical replication
● Publication (publish_via_partition_root) & subscription
● No schema changes/DDL

During write downtime
● Sync SEQUENCES, refresh MATERIALIZED VIEWs
● Disable subscription
● Verify LSN convergence
● CNAME/config propagation

4. Maintenance,
Configuration,

 & Observability

Maintenance
● Regular creation of new partitions

pg_partman:

Automatically creates time/number-based partition sets, or
detach/delete old partitions

●CALL partman.run_maintenance_proc(<...>);

Observability

Monitoring/alerting:
● Partitions are created/deleted by pg_partman as expected
● Partition size (skew)

auto_explain:
● Dynamically help detect slow query plans

Configuration
Partitioned tables are still just “tables”

autovacuum_max_workers (default=3)
● Consider increasing, based on on resource usage

Organizational Support

Build an understanding of partitioning & its benefits/constraints

TLDR;
● How can your partitioned table(s) stay performant and

well-understood going forward?
● How can you enable engineers to write partitioning-aware queries?

Thank you!
chelseadole@gmail.com

chelseadole.com

mailto:chelseadole@gmail.com

