
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Fixing Broken Plans
Help the planner do it’s job!

David Rader (he/him)
Sr. Mgr Database Engineering
AWS RDS and Aurora

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Our database was fine, then a plan flipped!

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Help the planner do its job!

Parameters

Statistics

Hints

Query Plan Management

5

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The Planner’s job

6

Convert your SQL to the
least cost plan

to execute your query

planner

SQL

The Plan

executor

• Access method per table
• Join order (every combination)
• Join methods

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Sample plan and estimated costs
=> explain select *
from boarding_pass bp
 left join boarding_pass_details d
 on bp.pass_id = d.boarding_pass_id
where pass_id between 10 and 50;

 QUERY PLAN
--
 Hash Right Join (cost=128.01..1521595.27 rows=93 width=120)
 Hash Cond: (d.boarding_pass_id = bp.pass_id)
 -> Seq Scan on boarding_pass_details d (cost=0.00..1367611.00
rows=58611900 width=80)
 -> Hash (cost=127.51..127.51 rows=40 width=40)
 -> Index Scan using boarding_pass_pkey on boarding_pass bp
(cost=0.44..127.51 rows=40 width=40)
 Index Cond: ((pass_id >= 10) AND (pass_id <= 50))
(6 rows)

7

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Sample plan and estimated costs
=> explain select *
from boarding_pass bp
 left join boarding_pass_details d
 on bp.pass_id = d.boarding_pass_id
where pass_id between 10 and 50;

 QUERY PLAN
--
 Hash Right Join (cost=128.01..1521595.27 rows=93 width=120)
 Hash Cond: (d.boarding_pass_id = bp.pass_id)
 -> Seq Scan on boarding_pass_details d (cost=0.00..1367611.00
rows=58611900 width=80)
 -> Hash (cost=127.51..127.51 rows=40 width=40)
 -> Index Scan using boarding_pass_pkey on boarding_pass bp
(cost=0.44..127.51 rows=40 width=40)
 Index Cond: ((pass_id >= 10) AND (pass_id <= 50))
(6 rows)

8

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 9

planner

SQL

The Plan

executor

Estimated
Rows

How does the planner
 the cost?

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Estimated rows
=> explain select *
from boarding_pass bp
 left join boarding_pass_details d
 on bp.pass_id = d.boarding_pass_id
where pass_id between 10 and 50;

 QUERY PLAN
--
 Hash Right Join (cost=128.01..1521595.27 rows=93 width=120)
 Hash Cond: (d.boarding_pass_id = bp.pass_id)
 -> Seq Scan on boarding_pass_details d (cost=0.00..1367611.00
rows=58611900 width=80)
 -> Hash (cost=127.51..127.51 rows=40 width=40)
 -> Index Scan using boarding_pass_pkey on boarding_pass bp
(cost=0.44..127.51 rows=40 width=40)
 Index Cond: ((pass_id >= 10) AND (pass_id <= 50))
(6 rows)

10

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 11

planner

SQL

The Plan

executor

Parameters
(Costs and
Methods)

Estimated
Rows

How does the planner
 the cost?

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Cost Parameters

seq_page_cost – Cost per page read in order (1.0)

random_page_cost - Lower value favors index scan

cpu_tuple_cost – Relative cost for processing vs IO

parallel_setup_cost – Cost to start parallel workers

…. and more:

https://www.postgresql.org/docs/current/runtime-config-
query.html#RUNTIME-CONFIG-QUERY-CONSTANTS

12

<=

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

enable_ Parameters

13

Access methods
(sequential, index, bitmap index)

Join methods
(nested loop, hash, merge)

Aggregates, Memoize, and lots more…
https://www.postgresql.org/docs/current/runtime-config-query.html#RUNTIME-CONFIG-QUERY-ENABLE

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Other parameters to consider

effective_cache_size – Estimate pages in memory

work_mem – Memory per sort/hash operation

max_parallel_workers_per_gather - OLTP? Set 0

geqo_threshold (genetic query optimization)

plan_cache_mode – prepared statements

 “The query was fast the first 5 times, then slowed down.”

14

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 15

planner

SQL

The Plan

executor

Parameters
(Costs and
Methods)

Estimated
Rows

If the planner chooses a “bad plan”
It means the

Cost was wrong

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Fixing Statistics to
Estimate Rows

16

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Statistics for estimating frequencies

18

Analyze
(auto-

analyze)
Sample
pages
& rows

pg_stats

Used by the planner
at plan time

‘statistics’
control how many

Per Attribute:
• most common values
• null fraction
• distinct count
• histogramsmore samples =>

longer analyze,
longer planning

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Beware! - Stats on large tables
Can have bad estimates for distinct values and histograms
Increase default_statistics_target

default for all tables, all statistics objects.

Set the statistics target for a single column
alter table alter column set statistics {target}
(Increases samples for entire table)

Or -- Set n_distinct yourself!
alter table alter column [COL] set n_distinct=[n or –ratio]

19

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Extended Statistics (Multivariate)

If two or more of your columns are related to each.
(think height and weight)

CREATE STATISTICS (kind) ON (col1, col2) FROM tbl;

Must create explicitly
Populated (and updated) by analyze/autoanalyze

22

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

bad stats => bad plans

The most important part of query planning.

Major version upgrade – run ANALYZE

Leave autovacuum turned on

Check n_distinct on large tables

Watch out for (rapidly) changing data distributions

Like a new partition

23

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Daily partitions!

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Can I tell the planner what
to do?

25

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

pg_hint_plan extension

26

planner +
pg_hint_plan

SQL
Parameters
(Costs and
Methods)

The Plan

Estimated
Rows

executor

hints

Hints are (one) comment in the SQL

/*+ IndexScan(tbl_a a_pk) */

/*+ NestLoop(tbl_a tbl_b) */

/*+ Leading((b a)) */

https://github.com/ossc-db/pg_hint_plan

https://github.com/ossc-db/pg_hint_plan

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Setup

=> show shared_preload_libraries;
 shared_preload_libraries

 rdsutils,pg_stat_statements,pg_hint_plan
(1 row)

27

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Example

=> explain select * from boarding_pass_details where
boarding_pass_id between 10 and 17000000;

 QUERY PLAN

 Seq Scan on boarding_pass_details
(cost=0.00..5100000.00 rows=169356713 width=80)
 Filter: ((boarding_pass_id >= 10) AND
(boarding_pass_id <= 17000000))
(2 rows)

28

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Example

=> explain /*+ IndexScan(boarding_pass_details) */
select * from boarding_pass_details where
boarding_pass_id between 10 and 17000000;

 QUERY PLAN

 Index Scan using boarding_pass_details_pass_id on
boarding_pass_details (cost=0.57..6426635.83
rows=169356713 width=80)
 Index Cond: ((boarding_pass_id >= 10) AND
(boarding_pass_id <= 17000000))
(2 rows)

29

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How do hints work?

31

planner +
pg_hint_plan

SQL
Parameters
(Costs and
Methods)

The Plan

Estimated
Rows

executor

hints

Hints increase the estimated costs

of other options

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Do I have to change app SQL?

No!

Use hint_plan.hints table

Hint for a normalized sql statement (? Instead of parameters)

=> create extension pg_hint_plan;
CREATE EXTENSION
=> set pg_hint_plan.enable_hint_table=1;
SET

37

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Using hints table

=>insert into hint_plan.hints (norm_query_string,
application_name, hints)
values
 ('explain select * from boarding_pass_details where
boarding_pass_id between ? and ?;'
 , 'psql'
 , 'SeqScan(boarding_pass_details)'
);

38

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Using hints table

=> explain select * from boarding_pass_details where
boarding_pass_id between 10 and 1000000;
 QUERY PLAN
--
 Gather (cost=1000.00..4522536.90 rows=9965369 width=80)
 Workers Planned: 2
 -> Parallel Seq Scan on boarding_pass_details
(cost=0.00..3525000.00 rows=4152237 width=80)
 Filter: ((boarding_pass_id >= 10) AND (boarding_pass_id
<= 1000000))
(4 rows)

39

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Read the docs carefully!

Table names in hints are case sensitive

Must match what is in pg_class.relname - not in the query

If you alias a table, use the alias in the hint

If you use the same table twice (subselects), find the auto-
generated alias in the explain to use in your hint

40

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Debugging hints – turn on log messages

=> set pg_hint_plan.debug_print=verbose;
SET
=> set client_min_messages = log;
SET

41

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Can I tell the planner
which plan to run?

44

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Unapproved
Plans

Query Plan Management

Enforce that only a “known” approved
plan is run

45

planner +
pg_hint_plan

SQL
Parameters
(Costs and
Methods)

Proposed Plan

Estimated
Rows

executor

hints

Approved Plan

QPMApproved
Plans

If proposed plan is approved, run it!

If not, QPM chooses the lowest
estimated cost approved plan to run

You can have one or more approved
plans per statement

When QPM sees a new (unknown)
plan, it is saved for later

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Unapproved
Plans

QPM – Reactive Mode

Manage one statement at a time

React when you see a “bad” plan

Mark that plan ‘Rejected’ – to prevent it
from being used again

46

planner +
pg_hint_plan

SQL
Parameters
(Costs and
Methods)

Proposed Plan

Estimated
Rows

executor

hints

Approved Plan

QPMApproved
Plans

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Unapproved
Plans

QPM – Proactive Mode

Capture and approve a set of plans for
all statements (baseline)

Set QPM to Enforce only approved plans

Prevents plan flips

QPM saves new plans

Evolve baseline periodically to
evaluate new plans

47

planner +
pg_hint_plan

SQL
Parameters
(Costs and
Methods)

Proposed Plan

Estimated
Rows

executor

hints

The Plan

QPMApproved
Plans

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Setting up QPM

48

Set rds.enable_plan_management to “1” in cluster parameter group

=> create extension apg_plan_mgmt;
CREATE EXTENSION

-- (proactive) “automatic” to capture plans for statements executed 2+ times
=> set apg_plan_mgmt.capture_plan_baselines to automatic;
SET
-- (reactive) “manual” to capture individual statements and plans interactively

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Capture your first plan

50

-- run your query at least 2 times
=> select * from boarding_pass_details where boarding_pass_id = 10;

=> select plan_hash, status, sql_text
from apg_plan_mgmt.dba_plans ;

-[RECORD 1]-----+---

plan_hash | -1757779097
status | Approved
sql_text | select * from boarding_pass_details where
boarding_pass_id = 10;

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Plan Outlines

51

=> select plan_outline from apg_plan_mgmt.dba_plans
where plan_hash = -1757779097;

-[RECORD 1]+--
plan_outline | { +
 | "Fmt": "01.00", +
 | "Outl": { +
 | "Op": "IScan", +
 | "QB": 1, +
 | "S": "pgair", +
 | "Idx": "boarding_pass_details_pass_id",+
 | "Tbl": "boarding_pass_details", +
 | "Rid": 1 +
 | } +
 | }

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Unapproved
Plans

Enforcing plans

>set apg_plan_mgmt.use_plan_baselines
to ON;
SET

52

planner +
pg_hint_plan

SQL
Parameters
(Costs and
Methods)

Proposed Plan

Estimated
Rows

executor

hints

The Plan

QPMApproved
PlansQPM will check Proposed Plan

and switch to approved plan

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Enforcing plans

53

=> /*+ SeqScan(boarding_pass_details) */ explain select * from
boarding_pass_details where boarding_pass_id = 10;

 QUERY PLAN
--
 Index Scan using boarding_pass_details_pass_id on boarding_pass_details
(cost=0.57..29.89 rows=704 width=80)
 Index Cond: (boarding_pass_id = 10)
 Note: An Approved plan was used instead of the minimum cost plan.
 SQL Hash: -1009835677, Plan Hash: -1757779097, Minimum Cost Plan Hash:
-1815128652
(4 rows)

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Saved plans

54

=> select sql_hash, plan_hash, status, sql_text from
apg_plan_mgmt.dba_plans;
-[RECORD 1]---

sql_hash | -1009835677
plan_hash | -1757779097
status | Approved
sql_text | select * from boarding_pass_details where boarding_pass_id =
10;
-[RECORD 2]---

sql_hash | -1009835677
plan_hash | -1815128652
status | Unapproved
sql_text | select * from boarding_pass_details where boarding_pass_id =
10;

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Unapproved
Plans

Evolving baselines

55

planner +
pg_hint_plan

SQL
Parameters
(Costs and
Methods)

Proposed Plan

Estimated
Rows

executor

hints

The Plan

QPMApproved
Plans

Run every plan with
captured parameters

Approve plans with
better execution times

Reject plans with worse
execution times

select apg_plan_mgmt.evolve_plan_baselines(..)

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Evolving plans

56

=> SELECT apg_plan_mgmt.evolve_plan_baselines (
 sql_hash,
 plan_hash,
 min_speedup_factor := 1.1,
 action := 'approve'
)
FROM apg_plan_mgmt.dba_plans WHERE status = 'Unapproved’;

NOTICE: [Unapproved] SQL Hash: -1009835677, Plan Hash: -1815128652, select *
from boarding_pass_details where boarding_pass_id = 10;
NOTICE: Baseline [Planning time 0.047 ms, Execution time 0.035 ms]
NOTICE: Baseline+1 [Planning time 0.245 ms, Execution time 55907.218 ms]
NOTICE: Total time benefit: -55907.381 ms, Execution time benefit: -
55907.183 ms, Estimated rows=704, Actual rows=10, Cost = 1000.00..3338570.40
-[RECORD 1]---------+--
evolve_plan_baselines | 1

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

dba_plans after evolve baselines

57

=> select plan_hash, status, has_side_effects, planning_time_ms,
 execution_time_ms, cardinality_error, plan_created, last_used
from apg_plan_mgmt.dba_plans
where plan_hash = -1815128652;

-[RECORD 1]-----+---------------------------
plan_hash | -1815128652
status | Unapproved
has_side_effects | f
planning_time_ms | 0.245
execution_time_ms | 55907.218
cardinality_error | 4.2541932631639967
plan_created | 2023-08-30 12:06:51.540512
last_used | 2023-08-30

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Reject specific plan

58

=> select apg_plan_mgmt.set_plan_status(-1009835677, -1815128652,
'rejected');
-[RECORD 1]---+--
set_plan_status | 0

-[RECORD 1]-----+---------------------------
plan_hash | -1815128652
status | Rejected
has_side_effects | f
planning_time_ms | 0.245
execution_time_ms | 55907.218
cardinality_error | 4.2541932631639967
plan_created | 2023-08-30 12:06:51.540512
last_used | 2023-08-30

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Unapproved
Plans

Export/Import Plan Outlines

61

QPMApproved
Plans

Unapproved
Plans

Approved
Plans

Test /
Staging Production

Plan
Outlines
(.plans)

pg_dump

pg_restore

QPM

Testing /
Fixing Plans

Hints,
params

approve /
reject

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Unapproved
Plans

Major Version Upgrade

62

QPMApproved
Plans

Unapproved
Plans

Approved
Plans

APG Version 12 APG Version 15

Plan
Outlines

Export Import
QPM

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Fix bad plans – Help the planner do it’s job!

63

Fix your stats!
Tweak a couple of cost parameters
Use pg_hint_plan
Enforce plans with QPM

Questions?

