

Summary

About Us

Postgres as a recommendation engine
Ingestion to support embeddings

How to maintain stability with high ingestion
volume

Topics

¥ instacart

Instacart is the leading
grocery technology
company in North America

W 1400+ w 600K+
Retail partners across the Instacart shoppers
US and Canada

v 95%+ ¥ Grocery

Household coverage in US, and Beyond
CA

Product Retrieval
Platform Team

e Ownership of infrastructure that
powers all search and product
retrieval

e Operations, uptime and reliability of
~250 self hosted PG hosts

e Building of product retrieval read
client and ingestion system

¥ instacart

The Origins

PGCon2012 - Fin|

PGCon 2012
The PostgreSQL Conference

Finding Similar

Effective similarity search in database

Finding similar objects is an ubiquitous task in day-to-day activity of developers of informational services. We present
PostgreSQL extension, which provides an effective way to find similar objects in database, as well as several usage
examples. The extension provides several methods to calculate sets similarity and similarity operator with indexing
support on the base of GiST and GIN frameworks.

SCHEDULE

Similarity search in large databases is an important issue in nowadays informational services, such as recommender systems.
Naive implementation is slow and resource consuming. We developed PostgreSQL extension, called smlar, which provides several
methods to calculate sets similarity (all built-in data types supported), similarity operator with indexing support on the base of
GiST and GIN frameworks. Sets similarity means, that smlar isn't about content similarity (it doesn't interested in the nature of objects), but it's about
similarity of sets. One example is a recommender system, which produces a list of recommendations based on collaborative and/or content filtering
(Amazon is one of the most popular electronic commerce company, which provides recommendations, based on item-item similarity). Content
filtering utilizes a set of discrete metadata of an object to build recommendation list of additional objects with similar properties, while collaborative _-
filtering uses information about user's past behaviour and similar decisions made by other users, to predict objects that the user may have interest in. _-

Smlar extension was developed in mind with collaborative filtering. It provides several methods to compute similarity between sets: jaccard, cosine _-

and tfidf. Experiments with generated and real data sets show considerable advantage of using smlar extension in compare with brute-force
approach.

Attached files

« Effective similarity search in PostgreSQL (application/pdf - 482.5 KB)

Confidential

Terminology

Embeddings

An embedding is vector (of floats and ints) representation of any real world
object. These could of embeddings of words, phrases, items, songs, videos
etc.

A machine learning model converts objects into embeddings.

Inference problems can be converted into a similarity search in embeddings
space.

Embeddings close to each other in this hyper dimensional embeddings space
are similar to each other.

Confidential

Similarity Search

Products 121
Bananas Embedding 22
s Generator 46
ML model
Avocados
99

—

Recommendation
Engine (Dot
product or
distance
calculator)

e Apple
> Redgala
apple
S

Confidential

There and
Back Again

Home Posts Talks About o

VECTORS ARE THE NEW JSON IN
POSTGRESQL

@ Mon, Jun 26, 2023 @ 10-minute read
Vectors are the new JSON.

That in itself is an interesting statement, given vectors are a well-studied mathematical structure, and JSON is a data interchange format. And
yet in the world of data storage and retrieval, both of these data representations have become the lingua franca of their domains and are
either essential, or soon-to-be-essential, ingredients in modern application development. And if current trends continue (I think they will),

vectors will be as crucial as JSON is for building applications.

Generative Al and all the buzz around it has caused developers to look for convenient ways to store and run queries against the outputs of
these systems, with PostgreSQL being a natural choice for a lot of reasons. But even with the hype around generative Al, this is not a new
data pattern. Vectors, as a mathematical concept, have been around for hundreds of years. Machine learning has over a half-century worth of
research. The array — the fundamental data structure for a vector — is taught in most introductory computer science classes. Even

PostgreSQL has had support for vector operations for over 20 years (more on that later)!

So, what is new? It’s the accessibility of these Al/ML algorithms and how easy it is to represent some “real world” structure (text, images,
video) as a vector and store it for some future use by an application. And again, while folks may point to the fact it’s not new to store the
output of these systems (“embeddings”) in data storage systems, the emergent pattern is the accessibility of being able to query and return

this data in near real-time in almost any application.

What does this have to do with PostgreSQL? Everything! Efficient storage and retrieval of a data type used in a common pattern greatly

simplifies app development, lets people to keep their related data in the same place, and can work with existing tooling. We saw this with

Search
Architecture in
One Line

Whenever a search
command is issued on the
storefront, a single
postgres query uses
tsvector to perform
keyword search and an
embedding based
personalization ranker. *

& Q apple

On Sale Rougemont Selection Organic

Best seller

51 78 each (est.) 5699

Honeycrisp Apple Your Fresh Market Royal Gala
$8.80/ kg Apples

About 0.2 kg each 3lb

= Manyin stock

N

51 32 each (est.) 33 each (est.)

Search Architecture

Client

Request Query

Retreival (2k

» items out of

10M)

=

Ranking
(Score, sort
and return
500 top
items)

Return Ranked items

Product Retrieval Cluster

e The cluster is designed to be a write ahead cache*
o Clients only have read only access

o Writes are written by specific workers pipelining the row
upserts from source of truth

o Replica sets have staggered replication lag (O, 5, 10) minutes.

Giving our cluster an eventually consistent flavour
o Local NVMes as disk, high shared buffers usage

e Replicais never promoted, handles primary loss by serving stale
data while primary is rebuilt

Confidential

Topology Diagram

C2 postgres

%

R’e“pm:a T

EC2 postgres
Replica 3

App Container PGCat - I
Pools [
EC2 postgres
Replica 2
kicks off incremental Prepares CSVs for
and full table syncs [IE]] upserts
s =)
Export and el
Sharding Ingestion Upserts the CSV
worker Worker
Cron

Ingestion State Machine
Database

&

EC2 postgres
Primary

Backups,
WAL stored in
s3

Confidential

Staggered Replica Lag?

™, Save to Dashboard = More...

PostgreSQL Replication Delay

Minutes

4
2
e e i . ,/_Ls&___w, O . . R G S S R
0 T — T — == T T T T T
10:00 10:15 10:30 10:45 11:00 11:15 11:30 11:45
Confidential

Staggered Replica Lag?

e Migrations / DDL locks

o A mistake, bad migration that grabs locks for long
e \Vacuums on certain pg-catalog tables would lock them
e recovery_min_apply_delay

Confidential

Outside Postgres

Training

Parameter and Hyperparameter tuning of ML models
Combining Embedding-based retrieved candidates and
keyword based candidates

Query understanding

Confidential

Within Postgres

Indexing trained model via MERGE-like command
TSVector keyword based search

Dot product (KNN) of user and product embeddings
Ranking for both Embedding-based and keyword based
candidates based on dot product scores

Joins for inventory availability, CTRs and many other
ML-generated scorings for ranking

Confidential

Terminology

K-nearest neighbour vs
Approximate Nearest Neighbor

ANN is an approximate algorithm that trades
offs accuracy for speed

ANN latency grows slowly, needed for similarity
search >1k records

Consequently ranking already retrieved search
(100-500 items) set according to
personalization embeddings can be done by
KNN

li Queries/s ——»

1-NN accuracy —

Confidential

KNN Extension

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Datum dot_product_c(PG_FUNCTION_ARGS)

{

ArrayType xinputl, xinput2;
float4 xal, *a2;

int lenl, len2, len;

float4 result = 0.0;

inputl = PG_GETARG_ARRAYTYPE_P(0);
input2 = PG_GETARG_ARRAYTYPE_P(1);
al = (float4 x) ARR_DATA_PTR(inputl);

a2 = (float4 %) ARR_DATA_PTR(input2);
lenl = ARR_DIMS(inputl)[0];

len2 = ARR_DIMS(input2)[0];

len = lenl < len2 ? lenl : len2;

for (int i = 0; i < len; i++) {
result += allil * a2[il];

PG_RETURN_FLOAT4(result);

Confidential

20

Why

Model Update Speed

CTRs and Continuous
Improvement

Development Velocity

More Flexibility

Minimal Data Transfers

Availability Machine

Confidential

21

Who is Instacart?

Why

Five nines reliability
Faster and more reliable data
pipeline for retailer information

e Much better p99 latency than

our previous architecture
o 80% reduction per API call
o Reduced API calls due to
availability joins

Dealing with dead tuples and herding cats

Ingestion

Confidential

Some Numbers

15 Billion Writes
Per Day

Confidential

How do we ingest
15b records a
day?

Confidential

Two strategies

1. Shard the data
2. Copy + on-conflict bulk
upserts

Confidential

Sharding Strategy

Store Front Sharding
Region Sharding
Omni Sharding

Confidential

Sharding Strategy

Each strategy allows us to isolate
primaries and group data
according to query patterns

Store Front Region Omni .
Prices Cross-retailer search Isolated non-joined tables
Availability Aggregate searches Shard key and mapping lookups

Sale information

Confidential

Defining Sharding Strategies

models [Item] = &CatalogStoreModel{

tableName: "items",
MOde| description: "items table for housing location specific data including price and availability",

MetaData owner: "catalog”,
opsgeniePoc: "catalog",
shardRouting: map[ClusterTypelShardingStrategyH

ItemCluster: retailerClusteredV1ByInventoryArealdSharding,
Sharding LegacyCluster: legacyUniformSharding,
Rules

Confidential

Sharding Strategies Continued

e Sharding strategies are immutable
per cluster

e Shards must receive enough traffic to
keep buffers warm

Confidential

How do we write sharded data?

1. Teams write CSVs to S3

2. Eachfileis streamed and split based on
the sharding strategies defined for that
model

3. Then each split file is written to a postgres
instance

Confidential

Copy + On Conflict Upserts

e Check if unlogged_table exists (create if it
doesn’t exist)

e Stream contents of s3 csv file to
unlogged_tabe

e Insert contents of unlogged_table to actual
table

e Delete rows in unlogged_table

e On errors, individually upsert directly to
table row by row

Confidential

COPY #{unlogged table name}
(#{columns.join (', ")})
FROM STDIN

WITH (FORMAT csv,
HEADER false, NULL '\\N',
FORCE NULL (#{columns.join("',

Y1)

INSERT INTO #{table name}
(#{columns.join (', ") })
SELECT DISTINCT ON
(# {import key})
columns.join(', ")}
FROM
#{unlogged table}

#{order by incremental (model) }
ON CONFLICT
(#{import key}) DO UPDATE SET
#{columns}
WHERE
(#{columns.map { |c|
"#{table name}.#{c} IS DISTINCT
FROM excluded.#{c}" }.join(' OR
1)

#{where incremental is newer}

Upsert Table Gotchas With High Volume

Preserving MVCC
Unlogged tables and dead tuples

Confidential

Who owns these WriteS? Ingestion By Team For the Top 25 Tables

Catalog

4.0%
Search
3.9%

Catalog 4%

ML 96%

ML
92.1%

Confidential

Why does this
matter?

Confidential

35

Why does this matter?

e Teams have different ingestion requirements

e Ingestion needs to be prioritized by team based and the
iImportance of the data

e Batches have drastically different load characteristics

Confidential

They all have one thing in

Stablllty of the
front end services
must be
malntalned

nnnnnnnnnn

Dead Tuples

Table Bloat and DB performance

¥ instacart

If you stack two
lasagnhas, you
have one tall

nnnnnnnnnn

Dead tuple risks

Disk usage

Autovacuum can not keep up with new writes
Ingestion throughput goes down

Slows down sequential scans

Causes poor query plans and slows down queries

Confidential

Addressing Bloat

pg_repack

~ instacart

Power
Repack

How we tune dead tuple cleanup

¥ instacart

What is
power
repack?

Power repack is our pg_repack orchestrator. It keeps tabs on dead tuples and
kicks off pg_repacks. It is aware of table-specific overrides.

¥ instacart

Power Repack

Teams define
rules that
selectively prune

nnnnnnnnnn

Power Repack’s
extended capabilities

where_clause:
items_availabilities: "updated_at > now() - Interval '14 days'"

items: "retailer_product_experiment_variant_id = -1"
retailer_products_cpgs: "has_deal = true OR updated_at >= NOW() - INTERVAL '14 days'"

~

Confidential

Issues with repacking

Things to keep in mind

e There must be enough headroom at all
times to run repack (based on the largest
table and its indices)

e If possible, pause ingestion to the repacking
table. High throughput ingestion can delay
repacks by several hours because data is
effectively written twice. Pausing ingestion
reduces the time to minutes.

45

Confidential

46

Postgres as complex objects engine

Postgres as a place to

Store complex objects
Compare complex objects

Michael Stonebaker’s original postgres theis. This was one

of the fundamental design goals of Postgres

Abstract

This paper presents the preliminary design of a new

database management system, called POSTGRES, that 1s
the successor to the INGRES relational database system
The main design goals of the new system are to

1) provide better support for complex objects,

2) provide user extendibility for data types, opera-
tors and access methods,

3) provide facihities for active databases (1e, alert-
ers and triggers) and inferencing including
forward- and backward-chaining,

4) simplify the DBMS code for crash recovery,

5) produce a design that can take advantage of opti-
cal disks, workstations composed of multiple
tightly-coupled processors, and custom designed
VLSI chips, and

6) make as few changes as possible (preferably
none) to the relational model

The second goal for POSTGRES 1s to make 1t easier
to extend the DBMS so that it can be used 1n new apph-
cation domains A conventional DBMS has a small set of
built-in data types and access methods Many applica-
tions require specialized data types (e g, geometic data
types for CAD/CAM or a latitude and longitude position
data type for mapping applications) While these data
types can be simulated on the built-in data types, the
resulting queries are verbose and confusing and the per-
formance can be poor A simple example using boxes 1s
presented elsewhere [STON86] Such applications would

ha haat anwwad he tha ahilite A add nawr data tunas and

Confidential

