
Postgres schema migrations
using the expand/contract
pattern
September 30, 2024

1

2

Speaker
Xata

Andrew Farries
Staff Software Engineer

andrew.farries@xata.io

3

The plan

Common pitfalls01 Tools and techniques02

Expand contract migrations03 Expand/contract with pgroll04

(image from londonist.com)

6

London
New York

7

“Database schemas are notoriously volatile, extremely
concrete, and highly depended on. This is one reason

why the interface between OO applications and
databases is so difficult to manage, and why schema

updates are generally painful.ˮ

Robert C. Martin, Clean Architecture

8

✓ Postgres as your primary database

✓ Database running in production

✓ Application code is live

✓ Zero downtime is important to you

Some assumptions weʼll be making

Common pitfalls

9

10

The act of never modifying or removing columns,

only adding new ones

Additive-only changes and schema debt

Wait, what?

● Bugs and performance implications

● General confusion

● Long-living compatibility code

Why is this bad?

11

PostgreSQL offers good ways to control locking

your database, but you need to know what youʼre

doing

The locking minefield

Wait, what?

● Tables are inaccessible

● Query queuing

● Testing is hard

Why is this bad?

12

Confidence that a migration will succeed in

production is hard to obtain with limited data

available in lower environments.

Testing schema migrations

Wait, what?

● Failures only detected in production

● Problems provisioning realistic data-sets

● Lack of confidence in migrations

Why is this bad?

13

Weʼre all human, mistakes occur. Having to roll

back the changes you made in production can be

painful

Rolling back your changes

Wait, what?

● Unplanned maintenance

● Likely untested

● Time consuming

Why is this bad?

14

One does not simply deploy database changes to

production, thereʼs a natural order of things

Deploying application changes

Wait, what?

● Data consistency

● Mismatched schemas and application code

● Angry users 😠

Why is this bad?

Production rollout strategies

15

16

Version controlled SQL scripts

17

Frameworks & ORMs

18

Application specific process

19

Planned downtime

Tools available

20

21

The expand / contract pattern

22

23

Expand & contract

24

Expand & contract

25

Big bang migration

app
v1

app
v1old schema

app
v2

app
v2

new
schema

26

expand/contract - dual write

app
v2

old schema

write

app
v1

new
schema

write

read
read/write

27

expand/contract - migrate

● Wait for the rollout of v2 to complete

● Run a data migration to backfill the `status` field

28

expand/contract - read new

app
v3

read

new
schema

write

29

expand/contract - contract

● Once the rollout of v3 is complete, drop the `shipped` field

● The migration is complete

30

Expand / contract - complete

app
v3

app
v3

new
schema

Zero-downtime, reversible, schema
migrations for Postgres

32

● Build around the expand/contract pattern

● Keep migration logic out of the application layer

● Easy rollbacks

● No nasty surprises around locking behaviour

● Postgres only

● Open source

pgroll - design goals

33

Application rollouts

34

Demo

35

● Expand contract is a powerful technique for schema change

● Migration tools should operate at a higher level than raw SQL

● Migrations are long-lived processes and migration tools

should manage them end to end

● Data migrations should be handled by migration tools, not at

the application level

Lesson learned

36

● Higher level migrations

● Multiple in-progress migrations at once

● Dry run data migration

Whatʼs next?

37

Coming soon to Xata

Thank you!

38

@xata

@xata.io

xataio/pgroll

xata.io/discord

Thank you

39

