Postgres schema migrations
using the expand/contract
pattern

September 30, 2024




Speaker

Xata

Andrew Farries

Staff Software Engineer

andrew.farries@xata.io



The plan

01 Common pitfalls O 2 Tools and techniques

O 3 Expand contract migrations O 4 Expand/contract with pgroll

A - xay



57727,

e
N % [ 0
= ,yﬁﬁr




Thie (3mmipsioners Map

THE CITY OF NEW YORK

M xata



New York

Untitled *

He syllus_zone Suppliers Addresses
- cuine admin_user]
. %o go T ] e sylius_user_oauth id: int(11) Customers

o

sylus_order itemg ., e e P ——— JEe acode : varchar(255) supplier_id cuslomera address_id
sylius_shipping_method_channels Al s promoven.soveoel auser_id (1) name : varchar(255) r_name ine_1_number_building
‘3shipping_method_id : int(11) Hlius_promotion_rule| "M(11) fiaosiation provider : varchar(255) type : varchar(8) - ne2_
avariant_id (1), channel ia  ini(11) ymotion_id  ini(11) identifer : varchar(25s) scope : varchar(255)
aquantiy : in(12) T product_1d - i1 wPrometon - ni(i1) fl ekt access_token : varchar(255)
swunit_price © int(11) B 2option_ia: inayy| atype : varchar(ass) age._limit : int(11) Stion_transiation] | arefresh_token : varchar(255) o i
aunits_total :in(11) vty oconfguaien: ogien sylius_promotion_order
sadjustments_tofal - int(11) e — order_id - int(11)
stotal : int(11) Re sylius_promotion_action!U€ ¢ oromotion_id - int(11)
wis_immutat =] aption_valie] aupdated_at - datetime
O i 1) i aper_customer_usage_imit: int(11)
airee_root ni(11) 1o Sylius_shipping methodon  ini(11)
wparent_id : int(11) feid : ini(11) old : int(1)
ycode  varchar(255) ncategory_id : ini(11) and: ini11)
tree_left: int(11) zone_id : int(11) ed: tinyint(1)
airee_right: int(11) tax_category_id - in(11) douie
atree_level : int(11) 2code : varchar(255) 1t double

9id: int(11) =
worder_id : ini(11)

VS sylius_taxon_image
aid - int(11)
4 wowner_id int11)

syiius_shipping. method transiation] ©0P° *V/¢h2/255)
o 1) patn - varcha(2ss)

gcustg
usert

wenab
salt
pass|

mlast

ranslatable_id :ini(11)
name : varchar(255) c
" configuration : longtext - double ustomer_Orders
" spostion: ina) ’ = ) doubi description : varchar(255) =
ERCH e ‘ncategory_requirement :inf( - double R e e
PaSS| 0 updated_at : datetime calculator : varchar(255) ing_required : tinyint(1) L L)
18l & mpasswora_requesten_ar - aateume 7 yis_enabled : tinyint(1) >

i customer_id
Sylus shipping category order_id |

4 : \ aid: int11)

4id it @emall_verification_token : varchar(255) | position : ii(11) o syilus_product_variant_transiatio ;code : varchar(255) product t “ e e
gatey mverified_at : datetime 5 marchived_at : datetime \umber : varchar(255) 9id: int(11) name : varchar(255) s N

facta ulocked : tinyini(2) o ereated_at : datetime Jotes :longtext { ransiatable_id  int(11)

address_id

staty: dress_type
descripton : longtext S
aconfi mexpires_at : datetme { @updated_at : datetime st : varchar(255) name : varchar(255)

mereated_at : datetime
meredentials_expire_at : datetime

locale ; varchar(255) mupdated_at : datetime

heckou_competed_t;dagima. ‘ \
e e ) Bk [ o sylius_product_transiauon

5 witems_total nt(11)
ated_ai: datetime vid: ini(11)
email: varchar(255) v wadjustments_total : in(11)
email_canonical : varchar(255) 's_at: ini(11) atotal - ini(11) leenier i
created_at : datetime e - varchar(255) hsip name : varchar(255)
siug : varchar(255)
mupdated_at : datetime mupdated_at : datetime astug 255)
= Z description : ongiext

roles : longtext

PY sylius_order_sequence’.  [fo

= \ Sylius_promotion
id: (1)

0 S ini(11)
i int(11)

acode : varchar(255)

curency_code - varchar(3) version :ini(11)
locale._code : varchar(255)
checkout_state : varchar(25¢

meta_keywords : varchar(255) name : varchar(255)

meta_description : varchar(255) description : varchar(255)
wpriorty : int(11)

wexclusive : tinyint(1)

short_description : longtext

payment_state : varchar(258
@shipping_state uamhav(zSS,“““a’; nv.fr,f,’;’;'(zss)
sylius._tax_rate {oken_value : varchar(255) L WInLy feo S susage_limit : ini(11)
yint(1) \ wid : in11) pused : int(11)

WAl syius tax_category | yansatabie_a (12 S ) order_id @ order_id

9id: int(11) e name : varchar(255) s product_id @ date_reported

code : varchar(255) uslug - varchar(255) mERdS o £ daletine quantity

name : varchar(255) description : longtext |mereated at: datetime S

description : longtext tlocale : varchar(255) e s datefime com

sereated_at : datetime

vid: 1)
wcategory_id :int(11)
szone_id - im(11)
gcode : varchar(255) Lot

name : varchar(255) ] a
samount : decimal(10,5) erdanvarchan25)
sincluded_in_price : tnyini(1)

calculator  varchar(255)

customer_ip : varchar(255) %
Mo «

mupdated at: datetime




"Database schemas are notoriously volatile, extremely
concrete, and highly depended on. This is one reason
why the interface between OO applications and
databases is so difficult to manage, and why schema
updates are generally painful.”

Robert C. Martin, Clean Architecture

M xata



Some assumptions we'll be making
v Postgres as your primary database
v Database running in production
v Application code is live

v Zero downtime is important to you




Common pitfalls

¥ xata



Additive-only changes and schema debt
Wait, what?
The act of never modifying or removing columns,

only adding new ones

Why is this bad?

e Bugs and performance implications
e General confusion

e Long-living compatibility code

b &
S

A | FREE v butterfly-store v ¥ main v

Schema | + Addatable

&% Product i Actions

® id

String

K 5 &

-]
-

ProductName
string

= Description
+ Text

# Price
Float

% xata.createdAt

Datetime

@ xata.updatedAt
Datetime

T xata.version

String

+ Add a column

§# Customer i Actions

+ CustomerName
String

T CustomerName-v2

String

T CustomerName-v3

String
T CustomerName-LastName
String

% xata.updatedAt

Datetime

% xata.createdAt
Datetime

T xata.version
String

+ Add a column

10

# Order

®

#*

Ll

Ll

&

id
String

OrderlD
Integer

OrderDate
Datetime

xata.createdAt
Datetime

xata.updatedAt
Datetime

xata.version

String

Add a column

## Comment

id
String

CommentText
Text

CustomerlD
Link to table

ProductID
Link to table



The locking minefield

Wait, what?
PostgreSQL offers good ways to control locking

your database, but you need to know what you're

doing

Why is this bad?
e Tables are inaccessible
e Query queuing

e Testing is hard

n

Non-conflicting lock modes can be held concurrently by many transactions. Notice ir} it some lock modes are self-conflicting (for exa
one transaction at a time) while others are not self-conflicting (for example, an ACCE| @ < can be held by multiple transactions).

Table-Level Lock Modes
ACCESS SHARE (AccessSharelLock)
Conflicts with the ACCESS EXCLUSIVE lock mode only.
The SELECT command acquires a lock of this mode on referenced tables. In general, any query that only reads a table and does not mc
ROW SHARE (RowShareLock)
Conflicts with the EXCLUSIVE and ACCESS EXCLUSIVE lock modes.

The SELECT command acquires a lock of this mode on all tables on which one of the FOR UPDATE, FOR NO KEY UPDATE, FOR SHARE,
SHARE locks on any other tables that are referenced without any explicit FOR ... locking option).

ROW EXCLUSIVE (RowExclusivelock)
Conflicts with the SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE lock modes.

The commands UPDATE, DELETE, INSERT, and MERGE acquire this lock mode on the target table (in addition to ACCESS SHARE locks ol
acquired by any command that modifies datain a table.

SHARE UPDATE EXCLUSIVE (ShareUpdateExclusivelock)

Conflicts with the SHARE UPDATE EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE lock modes. Thi
VACUUM runs.

Acquired by VACUUM (without FULL), ANALYZE, CREATE INDEX CONCURRENTLY, CREATE STATISTICS, COMMENT ON, REINDEX CONCUF
(for full details see the documentation of these commands).

SHARE (ShareLock)

Conflicts with the ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE lock
changes.

Acquired by CREATE INDEX (without CONCURRENTLY,
SHARE ROW EXCLUSIVE (ShareRowExclusivelock)

Conflicts with the ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUST
data changes, and is self-exclusive so that only one session can hold it at a time.

M xata



12

Testing schema migrations

Wait, what?

Confidence that a migration will succeed in
production is hard to obtain with limited data

available in lower environments.

Why is this bad?

e Failures only detected in production
e Problems provisioning realistic data-sets

e Lack of confidence in migrations




Rolling back your changes

Wait, what?

We're all human, mistakes occur. Having to roll

back the changes you made in production can be
painful

Why is this bad?

e Unplanned maintenance
e Likely untested

e Time consuming




Deploying application changes
Wait, what?

One does not simply deploy database changes to

production, there's a natural order of things

Why is this bad?

e Data consistency
e Mismatched schemas and application code

e Angryusers @

14




15

Production rollout strategies

¥ xata



Version controlled SQL scripts

New migration scri..Works2012 (sa (55))* X Ee1ReITN 1| I SRUTL S ¥Iu PRECREE ) i

Covers changes to: SelectalProducts. Script created at 2017-01-06 06:41)

y schema and data chan or thes jects v. Schen hanges to any other objects

migration scripts are deployed in

SET NUMERIC_ROUNDABORT OFF

G

SET ANSI_PADDING, ANSI_WARNINGS, CONCAT_NULL_YIELDS_NULL, ARITHABORT, QUOTED_IDENTIFIER, ANSI_NULLS ON
GO

PRINT N'Disabling DDL triggers'
GO

DISABLE TRIGGER ON DATABASE
GO

PRINT N

GO

PRINT 'This is change #4
G0

PRINT N'Re-enabling

G0




Frameworks & ORMs

python manage.py makemigrations

rails generate migration AddPartNumberToProduct

prisma migrate dev --name init

pnpm drizzle-kit generate:mysql

17



Application specific process

& GitLab | bocs

Database load
balancing

Database migration
pipeline

Database review
guidelines

Database check-
migrations job

Delete existing
migrations

Enums

Foreign keys and
associations

Introducing a new
database migration
version

Layout and access
patterns

Maintenance operations
Migrations style guide
Multiple databases
Ordering table columns

Pagination
guidelines

Post-deployment
migrations

Query comments with
Marginalia

Query Recorder
Single Table Inheritance
SQL guidelines

Strings and the Text
data type

&« Collapse sidebar

Creating a new table, example: create_table.
Adding a new column to an existing table, example: add_column.

3. Batched background migrations. These aren't regular Rails migrations, but application code that is executed via
Sidekiq jobs, although a post-deployment migration is used to schedule them. Use them only for data migrations that
exceed the timing guidelines for post-deploy migrations. Batched background migrations should not change the
schema.

Use the following diagram to guide your decision, but keep in mind that it is just a tool, and the final outcome will always
be dependent on the specific changes being made:

Yes—> Regular migration
Critical to

speed or \

behavior? No-

__—Yes—p<_ Isit fast?

Post-deploy migration
+ feature flag

No\
Post-deploy migration
Yes—¥

Schema
changed?

No™—»< s it fast?

No—» Background migration

How long a migration should take

In general, all migrations for a single deploy shouldn’t take longer than 1 hour for GitLab.com. The following guidelines
are not hard rules, they were estimated to keep migration duration to a minimum.

® Keep in mind that all durations should be measured against GitLab.com.

What's new? | v16.9 v Get free trial

On this page
I Choose an appropriate migration type
How long a migration should take
Decide which database to target
Create a regular schema migration

Regular schema migrations to add new
models

Schema Changes
Avoiding downtime
Reversibility
Atomicity and transaction
Heavy operations in a single transaction

Temporarily turn off the statement
timeout limit

Disable transaction-wrapped migration
Naming conventions
Truncate long index names
Migration timestamp age
Best practice
Migration helpers and versioning

Retry mechanism when acquiring database
locks

Usage with transactional migrations
Removing a column
Multiple changes on the same table
Removing a foreign key
Changing default value for a column
Creating a new table with a foreign key

Creating a new table when we have two
foreign keys

Usage with non-transactional migrations
(disable_ddl_transaction!)

When to use the helper method

How the helper method works




Planned downtime

- 3
Etsy.. Tichmcal dlfﬁculhes

Don't worry, Haim's
working on it!

What's happening: Fixing some ugly emergency server issues. We'll be back asap.

Estimated downtime: 12:00AM - 4:00AM EDT

19



20

Tools available

¥ xata



Star History

® Z liquibase/liquibase
e 2 flyway/flyway
@ sqitchers/sqitch
@ ariga/atlas
® () bytebase/bytebase

@ @ fabianlindfors/reshape |
& /reshape | :
| °
/ [ )

GitHub Stars

(") Bytebase

20M 206 208 2020 2022 2024 .
Date 2% star—history.com ReSha peDB




22

The expand / contract pattern

¥ xata



Expand & contract

In vivo: information ecosyster

Database types

Comparing relational and
document

Relational Database:

What is an ORM?

Using the expand and
contract pattern for
schema changes

PostgreSQL
The benefits of Pos
now PostgreSQL

host P

How to configure a PostgreSQL
da on RDS

to PostgreSQL

authorization

Step 3: Migrate existing data to the new schema

The new data schema is in place within the database, but it does not yet have any of the actual data that
the original schema holds. To prepare the new schema for actual use, you need to migrate the data from
the existing columns or tables to the new ones.

In some cases, this step may require iust convine the existing values to the new structure. but often. vou

may need to modify the data in son
might involve modifying data types,

It is essential to think carefully abot
semantically equivalent to their orig
original color column stored valug
to colors stored in another table, th

Other times, however, it might be I
into first_name and last_name, il
lies. For example, while you could g
script may not do the right thing wi
new fields relate to the original fielt
migrate some records.

Original Schema

Copy Data

How to rename a column on PlanetScale
Create a new column with the new name.
Update the application to write to both columns with new data.
Backfill all the data in the new column for rows that are still missing that information.
Optionally, add constraints like NOT NULL to the new column once all the data is backfilled.

Update the application to only use the new column, and remove any references to the old
column name.

Drop the old column.

This means at least two deploy requests are needed (potentially more if you want to enforce NOT NULL
without a DEFAULT), where you first add the newly named column and then drop the old one.




orders
order_id
customer_id
billing_address

shipped

Expand & contract

orders
order_id
customer_id

billing_address

status &)

24

status order_status

order_status:

pending
shipped
delivered
cancelled



25

Big bang migration

a a

app app
V2 V2

¥ xata



26

expand/contract - dual write

+ + + +

| id | customer_id | billing_address | shipped | status |
| + i + i |
| 3 | 5678 | 456 Somewhere Lane | False | <null> |
| 4 | 1234 | 123 Somewhere Street | True <null> |

(o + e o
t t t t

read/write
write

old schema

¥ xata



27

expand/contract - migrate

e Wait for the rollout of v2 to complete

e Run a data migration to backfill the "status” field

et ST e - - +
| id | customer_id | billing_address | shipped | status |
| -===F=—————————— - e - o —————— Fmmm—————— |
| 1 | 1234 | 123 Somewhere Street | True | shipped |
| 2 | 5678 | 456 Somewhere Lane | False | pending |
et Ean e T e e o +

4

¥ xata



28

expand/contract - read new

app
v3

A

write read

¥ xata



29

expand/contract - contract

e Once the rollout of v3 is complete, drop the ‘shipped" field

e The migration is complete

e o
| id | customer_id | billing_address

| -=—=+-—==—— - - +-—=
| 1 | 1234 | 123 Somewhere Street | Tr
| 2 | 5678 | 456 Somewhere Lane
- e e T +-

¥ xata



30

Expand / contract - complete

app app
v3 v3

¥ xata



Zero-downtime, reversible, schema
migrations for Postgres

M xata



pgroll - design goals

Build around the expand/contract pattern

Keep migration logic out of the application layer

Easy rollbacks

No nasty surprises around locking behaviour

Postgres only

Open source

32

&

=)
@8 g

Geerse BN ) oo [ Relase VO] i [EED) oo @t}

pgroll - Zero-downtime, reversible, schema migrations for
Postgres

parollL is an open source command-iine tool that offers safe and reversible schema migrations for PostgreSQL.
by serving multiple schema versions simultaneously. It takes care of the complex migration operations to ensure
that client applications continue working while the database schema is being updated. This includes ensuring
changes are applied without locking the database, and that both old and new schema versions work
simultaneously (even when breaking changes are being made!). This removes risks related to schema migrations,
and greatly simplifies client application rollout, also allowing for instant rollbacks.

See the introductory blog post for more about the problems solved by ‘pgroll
Features

+ Zero-downtime migrations (no database locking, no breaking changes).
« Keep old and new schema versions working simutaneously.

+ Automatic columns backfllng when needed.

« Instant rollback in case of issues during migration.

« Works against existing schemas, no need to start from scratch.

« Works with Postgres 14.0 or later.

+ Works with any Postgres service (including RDS and Aurora).

« Written in Go, cross-platform single binary with no external dependencies.

How pgroll works

paroll works by creating virtual schemas by sing views on top of the physical tables. This allows for performing
al the necessary changes needed for a migration without affecting the existing clients.

89 App/Ciients



33

Application rollouts

89 App/Clients

M xata



34

Demo

¥ xata



Lesson learned

Expand contract is a powerful technique for schema change

Migration tools should operate at a higher level than raw SQL

Migrations are long-lived processes and migration tools

should manage them end to end

Data migrations should be handled by migration tools, not at

the application level

35




36

What's next?

e Higher level migrations

e Multiple in-progress migrations at once

e Dry run data migration




Coming soon to Xata

san-diego-get-it-done v P main v © Docs Help °

< Back to workspace
Schema BaGEEEs

ses Schema

® F d Schema View  Schema History  Migration Editor
aygroun

& Search engine 2o Y mig_cmo176v4noji046a052g
®, Chat with your data Jan 23 02:29:32.09 PM Renamed table get_it_done_requests_open_datasd - get_it_done_requests_open_data
Parent mig_cmo10jv4noji046ao4tg
Jan 23 02:15:27.94 PM Added column get_it_done_requests_open_datasd.attachments
| Usage & limits Status true

Jan 23 02:13:25.43 PM Dropped column get_it_done_requests_open_datasd.iamfloc
& Settings Started Jan 23 02:29:32.09 PM

Jan 23 02:13:16.47 PM Dropped column get_it_done_requests_open_datasd.date_closed Type pgroll

get_it_done_requests_open_data Jan 23 02:01:33.65 PM Added table get_it_done_requests_open_datasd

~+ Add atable




I
/ 38

Thank you!

Yy @xata () xataio/pgroll

@ @xata.io @ xata.io/discord

A (14 qu



/

Thank you



