
© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Become a PG_STAT_* (Star)

Chirag Dave
Pr. PostgreSQL SA
AWS

Sami Imseih
Senior Database Engineer
AWS

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Typical PostgreSQL challenges

Poor query performance or higher query latency?

Higher I/O wait times?

Slow vacuums/table bloat?

Inconsistent query run time?

High DML latency?

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is PG_STAT_?

• pg_stat is a prefix for collection of server activity views

• (NOT) pg_stats or pg_statistics

• Updated by ANALYZE, used by optimizer

• Not server activity related

• https://www.postgresql.org/docs/current/monitoring-stats.html

• https://wiki.postgresql.org/wiki/Monitoring

https://www.postgresql.org/docs/current/monitoring-stats.html
https://wiki.postgresql.org/wiki/Monitoring

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Dynamic views

pg_stat_activity
pg_stat_gssapi

 pg_stat_replication
pg_stat_ssl
pg_stat_subscription
pg_stat_wal_receiver

pg_stat_progress_analyze
 pg_stat_progress_basebackup
 pg_stat_progress_cluster
 pg_stat_progress_copy
 pg_stat_progress_create_index
 pg_stat_progress_vacuum

• PID column to identify a process

• An entry per connection

• Entry disappears when connection closes

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Dynamic views

-[RECORD 1]----+-------------------------------------
datid | 5
datname | postgres
pid | 19182
leader_pid |
usesysid | 10
usename | postgres
application_name | psql
client_addr |
client_hostname |
client_port | -1
backend_start | 2024-04-08 01:51:57.306027+00
xact_start | 2024-04-08 01:52:25.990124+00
query_start | 2024-04-08 01:52:25.990124+00
state_change | 2024-04-08 01:52:25.990128+00
wait_event_type | IO
wait_event | DataFileRead
state | active
backend_xid |
backend_xmin | 759
query_id | 621416754327427450
query | select count(*) from demo a, demo b;
backend_type | client backend

SELECT * FROM pg_stat_activity
WHERE state = 'active’
AND pid <> pg_backend_pid();

SELECT * FROM pg_stat_progress_vacuum;

-[RECORD 1]--------+--------------
pid | 19782
datid | 5
datname | postgres
relid | 16407
phase | scanning heap
heap_blks_total | 192308
heap_blks_scanned | 6
heap_blks_vacuumed | 0
index_vacuum_count | 1
max_dead_tuple_bytes | 67108864
dead_tuple_bytes | 0
indexes_total | 5
indexes_processed | 3

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Cumulative Statistics

• All backends increment the values

• Values constantly increasing

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Cumulative Statistics

Cluster-wide

Per-Database

Per-Relation Per-Function

Per-Statement

8.3+ pg_stat_bgwriter
12+ pg_stat_archiver
13+ pg_stat_slru
14+ pg_stat_wal
16+ pg_stat_io
16+ pg_stat_replication_slots
16+ pg_stat_recovery_prefetch
16+ pg_stat_subscription_stats
17+ pg_stat_checkpointer

7.2+ pg_stat_database
9.1+ pg_stat_database_conflicts

7.2+ pg_stat_all_tables
7.2 + pg_stat_all_indexes
7.2 + pg_statio_all_tables
7.2 + pg_statio_all_indexes
7.2 + pg_statio_all_sequences

8.4+ pg_stat_user_functions

8.4+ pg_stat_statements

* Not Cumulative Statistics System/Core Postgres
* Add to shared_preload_libraries
* CREATE EXTENSION pg_stat_statements

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Cumulative Statistics
pg_stat_* views

pg_stat_* functions

$PGDATA/pg_stat_tmp/db_0.stat,.. Shared Memory

Statistics Collector

pid=3000 pid=4000 pid=3000 pid=4000

<15 >=15

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Cumulative Statistics
• Delta Metric to find changes during a time interval

• Calculates the rate of change

SELECT now() timestamp, tup_inserted from
pg_stat_database where datname = 'postgres’;

 timestamp | tup_inserted
------------------------------+--------------
2024-04-08 02:52:28.50213+00 | 3016
(1 row)

 timestamp | tup_inserted
-------------------------------+--------------
2024-04-08 02:52:38.502136+00 | 13022
(1 row)

• 13022 – 3016 = 10006 rows ever 10 seconds

• 10006 / 10 ≈ 1000 rows per second

• https://github.com/awslabs/pg-counter-metrics

https://github.com/awslabs/pg-counter-metrics

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Cumulative Statistics System

• Background Writer, Checkpoint

• Vacuum /Autovacuum

• DML activity

• HOT Updates

• Index/Table Access

• I/O

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

PostgreSQL I/O

Block in
memory

t-v1
t-v2
t-v3

Checkpoint

Datafile

t-v1
t-v2

Full
block

t-v3

WAL

Archive

4K

4K
8K

update t set y = 6

shared_buffer

Write it to the WAL log

Update Shared Buffers

Checkpoint

Write to the disk4

1

3

2

• Dirty Buffer Flushing
• Checkpoint

• Too often: More Full Page Writes
• Too far: longer recovery times

• Background Writer

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

pg_stat_wal (PG14)

wal_fpi à WAL records due to a checkpoint
wal_buffers_full -à wal_buffers setting is set too low

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

shared_buffers
Shared_buffers

Access frequency

Storage

Pa
ge

 r
ea

d

Pa
ge

 r
ea

d

Evict cold pages

Reads

background writer

checkpointerWrite out dirty pages

UpdateSelect

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Ring Buffers - Buffer Access Strategy

Ring Buffers

Application

bulk-reading

bulk-writing

vacuum-processing

Prevent cache thrashing and maintains a higher cache hit ratio

Disk
shared_buffers

SELECT * from large_table;

256 KB

16 MB

256 KB

New in PG16: vacuum_buffer_usage_limit> ¼ of shared_buffers

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Background Writer, Checkpoint
postgres=# select * from pg_stat_bgwriter;
-[RECORD 1]---------+------------------------------
checkpoints_timed | 0 > checkpoint_timeout
checkpoints_req | 6 > max_wal_size
checkpoint_write_time | 72441
checkpoint_sync_time | 3838
buffers_checkpoint | 6380 dirty buffers written by checkpointer
buffers_clean | 16248 dirty buffers written by background writer
maxwritten_clean | 161
buffers_backend | 520106 dirty buffers written by backend
buffers_backend_fsync | 0
buffers_alloc | 465918
stats_reset | 2024-04-09 13:54:18.683023-05

• Keep buffers_backend close to 0 as possible
• 17+, this info will be spread between pg_stat_bgwriter, pg_stat_checkpointer,

pg_stat_io

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

DML Activity

n_tup_ins | 0
n_tup_upd | 288202
n_tup_del | 0

HOT Updates

n_tup_ins | 0
n_tup_upd | 288202
n_tup_del | 0
n_tup_hot_upd | 288159
n_tup_newpage_upd | 43

• Maximize n_tup_hot_update
• Minimize n_tup_newpage_upd (16+)
• Reduce FILLFACTOR for heavily updated tables
• Drop unused Indexes

• Tracks # of inserts/updates/deletes per table

select * from pg_stat_all_tables
where relname = 'pgbench_accounts';

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Vacuum -[RECORD 1]-------+------------------------------
relid | 16391
schemaname | public
relname | pgbench_accounts
seq_scan | 0
last_seq_scan |
seq_tup_read | 0
idx_scan | 8253719
last_idx_scan | 2024-04-07 14:46:15.527926+00
idx_tup_fetch | 8253719
n_tup_ins | 0
n_tup_upd | 4126862
n_tup_del | 0
n_tup_hot_upd | 4064855
n_tup_newpage_upd | 62007
n_live_tup | 999905
n_dead_tup | 134650
n_mod_since_analyze | 80551
n_ins_since_vacuum | 0
last_vacuum |
last_autovacuum | 2024-04-07 14:45:50.843147+00
last_analyze |
last_autoanalyze | 2024-04-07 14:45:53.843147+00
vacuum_count | 0
autovacuum_count | 0
analyze_count | 0
autoanalyze_count | 18

select * from pg_stat_all_tables where relname =
'pgbench_accounts';

• track_counts = ON (DEFAULT)
• pg_stat_all_indexes
• pg_stat_all_sequences

• Autovacuum/vacuum metrics

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Vacuum

• Metrics used directly by autovacuum launcher

• Crash recovery/pg_stat_reset
• Wipes out the data
• May delay autovacuum/autoanalyze

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Vacuum
• pg_stat_progress_vacuum.index_vacuum_count increases every ”vacuum index cleanup” cycle

• In Postgres 16 and below:
• Scan the table for dead rows, and store the dead rows in

autovacuum_work_mem/maintenance_work_mem (179 million dead rows max)
• Vacuum the indexes
• Repeat
• Super expensive if multi-index vacuum cycles are required.

• In Postgres17:
• Multi-index cycles will become less likely thanks to

https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=30e144287a

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Index/Table Access

• last_seq_scan and last_idx_scan (16+)

postgres=# select * from pg_stat_all_tables where relname =
'demo';
-[RECORD 1]-------+------------------------------
relid | 65572
schemaname | public
relname | demo
seq_scan | 0
last_seq_scan | 2024-04-07 17:08:22.454168+00
seq_tup_read | 0
idx_scan | 5
last_idx_scan | 2024-04-07 17:09:22.454168+00
idx_tup_fetch | 37199829

postgres=# select * from pg_stat_all_indexes where
indexrelid = 'demo_id'::regclass::oid;
-[RECORD 1]-+------------------------------
relid | 65572
indexrelid | 65575
schemaname | public
relname | demo
indexrelname | demo_id
idx_scan | 5
last_idx_scan | 2024-04-07 17:09:22.454168+00
idx_tup_read | 61999715
idx_tup_fetch | 37199829

• For OLTP, seq_scan should be close to 0

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Index/Table Access postgres=# select * from pg_stat_all_tables where relname =
'demo';
-[RECORD 1]-------+------------------------------
relid | 65572
schemaname | public
relname | demo
seq_scan | 0
last_seq_scan |
seq_tup_read | 0
idx_scan | 5
last_idx_scan | 2024-04-07 17:09:22.454168+00
idx_tup_fetch | 37199829

• idx_tup_fetch

• Index scan visits a heap

• Projecting columns not in index

EXPLAIN (ANALYZE) SELECT id FROM demo WHERE id = 'c40d8806-
c87e-4942-8d35-ce79819ba68c';
 QUERY PLAN

--
Index Only Scan using demo_pkey on demo (cost=0.43..4.45 rows=1
width=16) (actual time=0.045..0.047 rows
=1 loops=1)
 Index Cond: (id = 'c40d8806-c87e-4942-8d35-ce79819ba68c'::uuid)
 Heap Fetches: 0
 Planning Time: 0.123 ms
 Execution Time: 0.077 ms
(5 rows)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Index/Table Access postgres=# select * from pg_stat_all_indexes where
indexrelid = 'demo_id'::regclass::oid;
-[RECORD 1]-+------------------------------
relid | 65572
indexrelid | 65575
schemaname | public
relname | demo
indexrelname | demo_id
idx_scan | 5
last_idx_scan | 2024-04-07 17:09:22.454168+00
idx_tup_read | 61999715
idx_tup_fetch | 37199829

• Index-only scans minimize heap fetches
• If idx_tup_fetch high, VACUUM more aggressive
• Visibility Map not up-to-date

SELECT tup_returned, tup_fetched from
pg_stat_database where datname =
'postgres';
-[RECORD 1]+---------
tup_returned | 62284143
tup_fetched | 37204480

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

I/O

Pre 16, Cumulative Statistics did not make a distinction for Buffer Access Strategies

New in PG16 -à pg_stat_io

• CONTEXT column = Buffer Access Strategy

• Improves cache hit ratio calculation

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

I/O
postgres=# \d pg_statio_all_tables
 View "pg_catalog.pg_statio_all_tables"
 Column | Type | Collation | Nullable | Default

-----------------+--------+-----------+----------+---------
relid | oid | | |
schemaname | name | | |
relname | name | | |
heap_blks_read | bigint | | |
heap_blks_hit | bigint | | |
idx_blks_read | bigint | | |
idx_blks_hit | bigint | | |
toast_blks_read | bigint | | |
toast_blks_hit | bigint | | |
tidx_blks_read | bigint | | |
tidx_blks_hit | bigint | | |

postgres=# \d pg_statio_all_indexes
 View "pg_catalog.pg_statio_all_indexes"

 Column | Type | Collation | Nullable | Default
---------------+--------+-----------+----------+---------
relid | oid | | |
indexrelid | oid | | |
schemaname | name | | |
relname | name | | |
indexrelname | name | | |
idx_blks_read | bigint | | |
idx_blks_hit | bigint | | |

postgres=# \d pg_stat_io
 View "pg_catalog.pg_stat_io"
 Column | Type | Collation | Nullable |

Default
----------------+--------------------------+-----------+----------+---

backend_type | text | | |
object | text | | |
context | text | | |
reads | bigint | | |
read_time | double precision | | |
writes | bigint | | |
write_time | double precision | | |
writebacks | bigint | | |
writeback_time | double precision | | |
extends | bigint | | |
extend_time | double precision | | |
op_bytes | bigint | | |
hits | bigint | | |
evictions | bigint | | |
reuses | bigint | | |
fsyncs | bigint | | |
fsync_time | double precision | | |
stats_reset | timestamp with time zone | | |

• Context = Normal, Bulkread, Bulkwrite, Vacuum

postgres=# \d pg_stat_database
 View "pg_catalog.pg_stat_database"
 Column | Type | Collation | Nullable | Default
--------------------------+--------------------------+-----------+----------+---------
 datid | oid | | |
 datname | name | | |
....
 blk_read_time | double precision | | |
 blk_write_time | double precision | | |
...

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

I/O - Demo
DROP TABLE IF EXISTS demo;
CREATE TABLE demo (id int, c1 text);
INSERT INTO demo SELECT n FROM generate_series(1, 8000000) as n;

SELECT
blks_read,
blks_hit,
ROUND(blks_hit/(blks_hit+blks_read::numeric)*100,
2)
FROM pg_stat_database
WHERE datname = 'postgres’;

blks_read | blks_hit | round
-----------+----------+-------
 82 | 1567 | 95.03
(1 row)

SELECT
backend_type,
context,
reads,
hits,
ROUND(hits/(reads+hits)::numeric * 100, 2)
FROM pg_stat_io
WHERE context = 'normal’
AND backend_type = 'client backend’
AND object = 'relation’;

 backend_type | context | reads | hits | round
----------------+---------+-------+------+-------
client backend | normal | 86 | 1578 | 94.83
(1 row)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

I/O - Demo
VACUUM demo;

SELECT
blks_read,
blks_hit,
ROUND(
blks_hit/(blks_hit+blks_read::numeric)*100, 2)
FROM pg_stat_database
WHERE datname = 'postgres’;

blks_read | blks_hit | round
-----------+----------+-----------
 19657 | 53499 | 73.13
(1 row)

SELECT
backend_type,
context,
reads,
hits,
ROUND(hits/(reads+hits)::numeric * 100, 2)
FROM pg_stat_io
WHERE context = 'normal’
AND backend_type = 'client backend’
AND object = 'relation’;

 backend_type | context | reads | hits | round
----------------+---------+-------+------+-------
client backend | normal | 193 | 37438 | 99.49
(1 row)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

I/O - Demo
SELECT COUNT(*) FROM demo;

select
 backend_type,
 context,
 reads,
 hits,
 ROUND(hits/(reads+hits)::numeric * 100, 2) chr

from
 pg_stat_io

where context = 'normal'
and backend_type = 'client backend'
and object = 'relation';

backend_type | context | reads | hits | round
----------------+---------+-------+-------+-------
client backend | normal | 247 | 73745 | 99.67

(1 row)

select
 backend_type,
 context,
 reads,
 hits,
 ROUND(hits/(reads+hits)::numeric * 100, 2) chr

from
 pg_stat_io

where context = 'bulkread'
and backend_type = 'client backend'
and object = 'relation';

backend_type | context | reads | hits | chr
----------------+----------+-------+------+-------
client backend | bulkread | 6542 | 5371 | 45.09

(1 row)

select
 blks_read,
 blks_hit,
 ROUND(
 blks_hit/
 (blks_hit+blks_read::numeric)*100, 2) chr

from pg_stat_database
where datname = 'postgres’;

blks_read | blks_hit | chr
-----------+----------+-------

 58593 | 122667 | 67.67
(1 row)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Takeaways

• pg_stat_* views gives you observability into PG’s workload

• Postgres 15 and 16

• Improved stability of the system, shared memory vs background worker

• PG_STAT_IO improves visbility into I/O contexts = better cache hit ratio calculations

Ready to upgrade!

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!

