Best practices for using pgvector

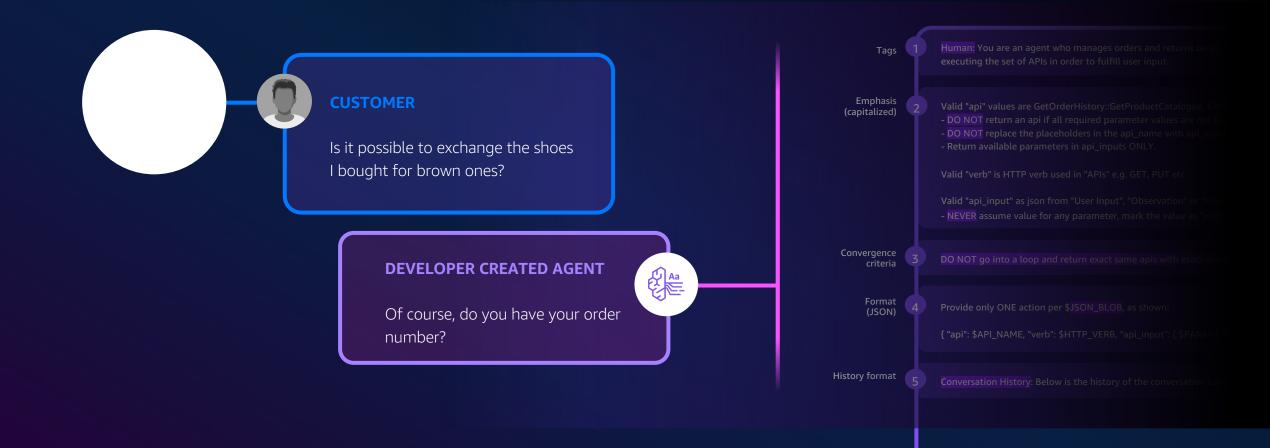
Jonathan Katz

aws

(he/him) Principal Product Manager – Technical AWS

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

- Overview of generative AI and the role of databases
- PostgreSQL as a vector store
- pgvector best practices
- Ongoing work



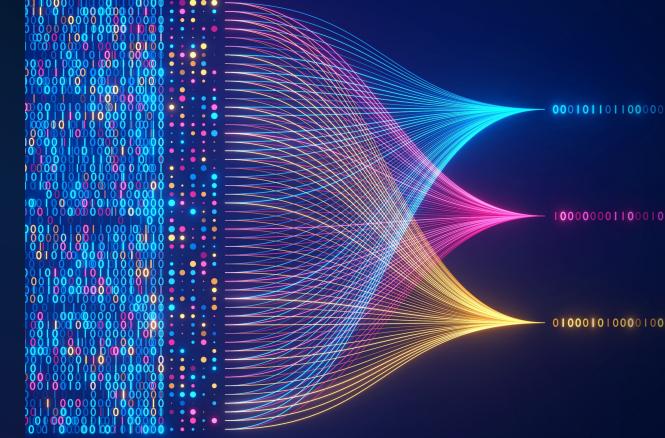
Generative AI is powered by foundation models

Pretrained on vast amounts of unstructured data

Contain a large number of parameters that make them capable of learning complex concepts

Can be applied in a wide range of contexts

Customize FMs using your data for domainspecific tasks



How to provide your data to generative Al applications?

Training your own purpose-built LLM foundation models

Train a foundation model using your curated, specialized data

Fine-tuning a foundation model

Fine-tune a foundation model using your curated, labeled data

Context engineering using RAG

Guide foundation models by prompting with contextually relevant data (RAG)

Retrieval Augmented Generation (RAG)

Configure FM to interact with your company data

QUESTION

How much does a blue elephant vase cost?

K N O W L E D G E B A S E S

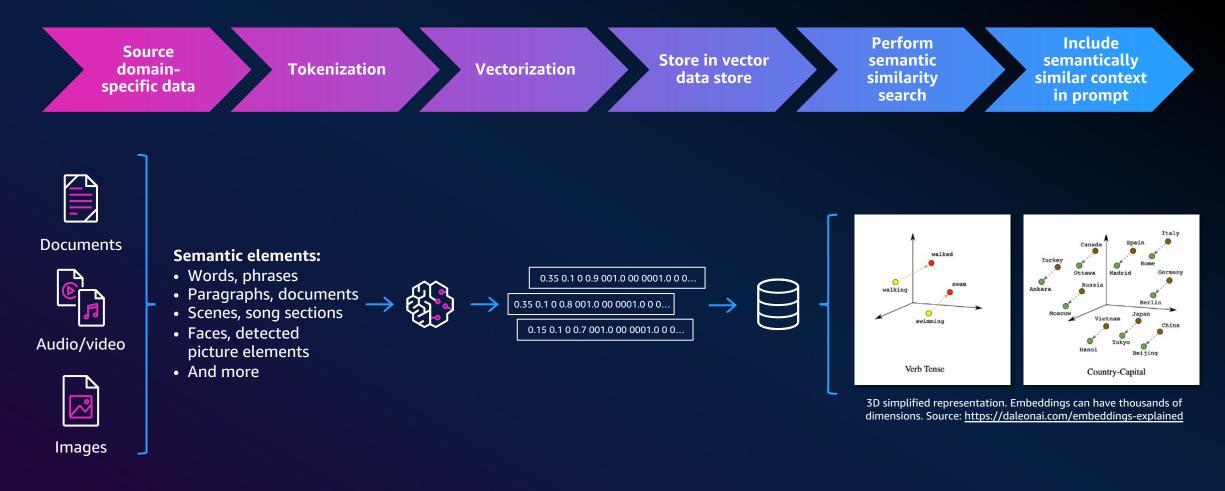
Product catalog

Price data

FOUNDATION MODEL A N S W E R Sorry, I don't know A blue elephant vase typically costs \$19.99

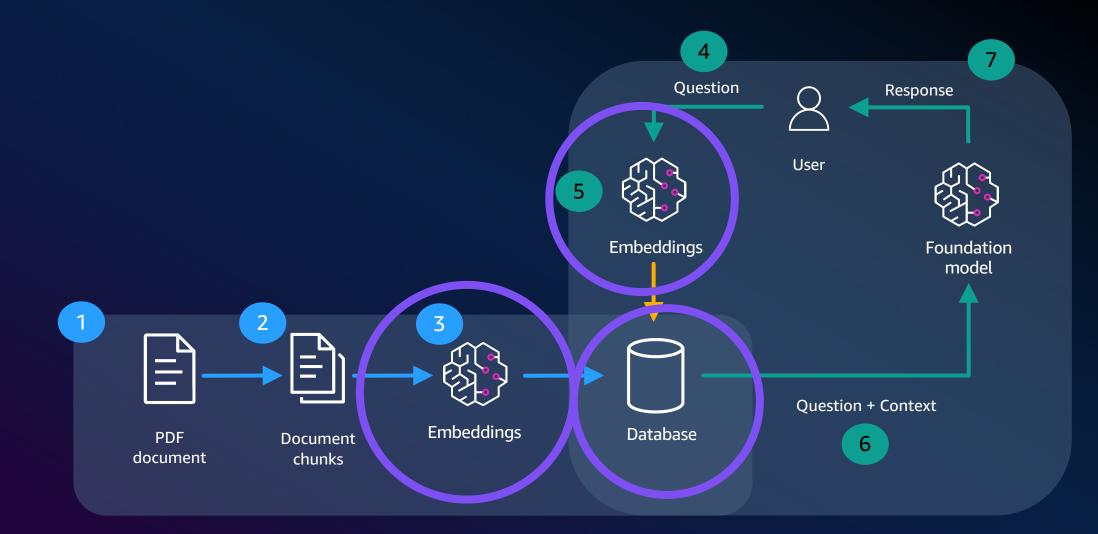
© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What are vector embeddings?



Embeddings: When vector elements are semantic, used in generative AI

The role of vectors in RAG



Challenges with vectors

Time to generate embeddings

• Embedding size

Compression

Query time

aws



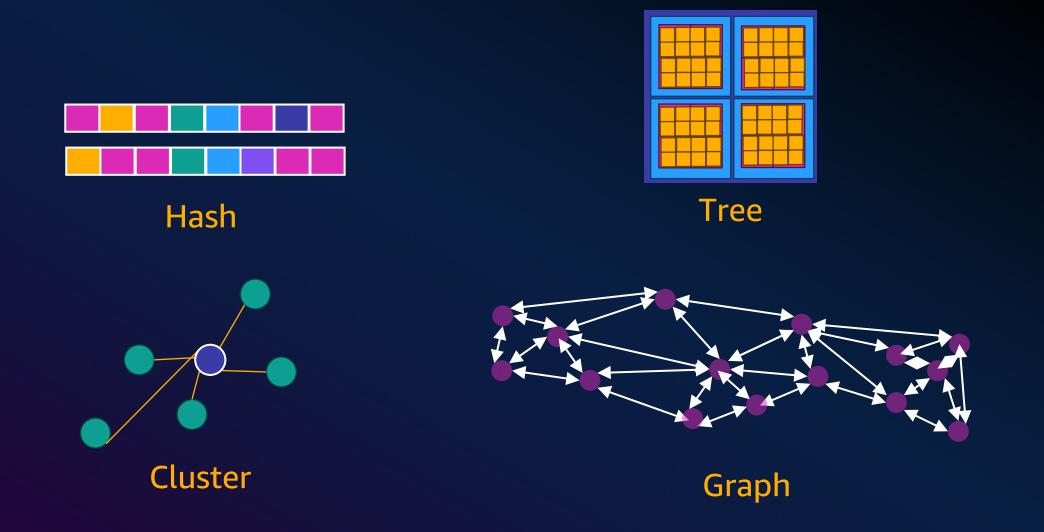
1,000,000 => 5.7 GB

Approximate nearest neighbor (ANN)

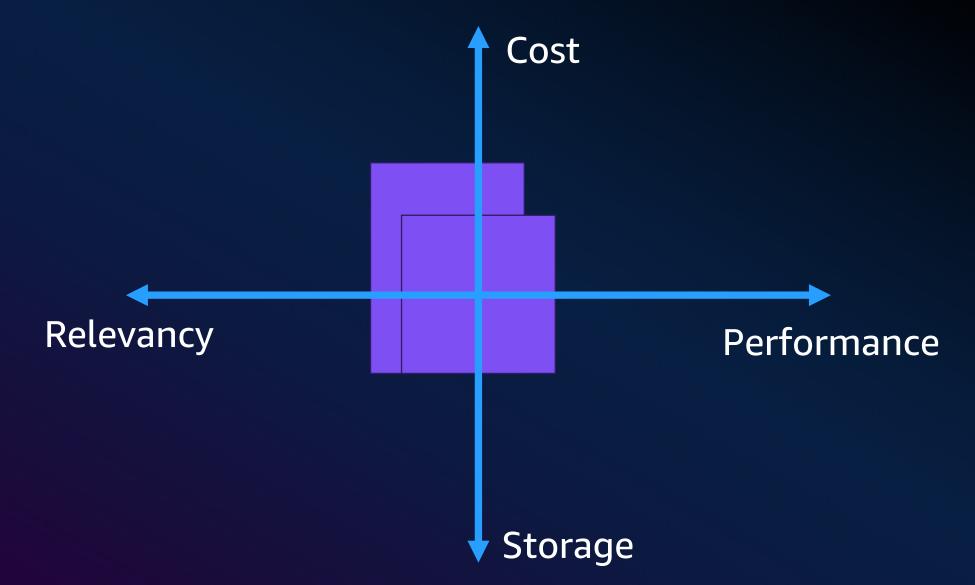
- Find similar vectors without searching all of them
- Faster than exact nearest neighbor
- "Recall" % of expected results

Recall: 80%

ANN indexing algorithm types and tradeoffs



Considerations for vector storage



Questions for choosing a vector storage system

• Where does vector storage fit into my workflow?

- How much data am I storing?
- What matters to me: Storage, performance, relevancy, cost?
- What are my trade-offs: Indexing, query time, schema design?

PostgreSQL as a vector store

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why use PostgreSQL for vector searches?

Existing client libraries work without modification

May require an upgrade

Convenient to co-locate app + AI/ML data in same database

Interfacing with PostgreSQL storage gives ACID transactional storage

Postgres, PostgreSQL, and the Slonik Logo are trademarks or registered trademarks of the PostgreSQL Community Association of Canada, and used with their permission.

Why care about ACID for vectors?

- <u>A</u>tomicity: "All or nothing" stored in transaction (bulk loads)
- <u>C</u>onsistency: Follows rules for other data stored in database
- Isolation: Correctness in returned results; committed transactions "immediately available"

<u>D</u>urability: One committed, vectors are safely stored.

What is pgvector?

Adds support for storage, indexing, searching, metadata with choice of distance

vector data type

Co-locate with embeddings

Exact nearest neighbor (K-NN) Approximate nearest neighbor (ANN)

Supports HNSW & IVFFlat indexing, with options for scalar and binary quantization

github.com/pgvector/pgvector

aws

Distance operations include ' Cosine, Euclidean/L2, Manhattan/L1, Dot product, Hamming, Jaccard

Why pgvector?

2023

Vector searches in PostgreSQL "It was there"

Can use existing PostgreSQL drivers Open source

C-based

aws

2024

High performance vector searches Support for larger vectors Sustained, rapid improvements Better support in developer tools

pgvector: Year-in-review timeline

- <u>v0.4.x</u> (1/2023 6/2023)
 - Improved IVFFlat plan costs
 - Increasing dimension of vectors stored in table + index
- <u>v0.5.x</u> (8/2023 10/2023)
 - Add HNSW index + distance function performance improvements
 - Parallel IVFFlat builds
- <u>v0.6.x</u> (1/2024 3/2024)
 - Parallel HNSW index builds + in-memory build optimizations
- <u>v0.7.x</u> (4/2024)

- halfvec (2-byte float), bit(n) index support, sparsevec (up to 1B dim)
- Quantization (scalar/binary), Jaccard/hamming distance, explicit SIMD

Indexing methods: IVFFlat and HNSW

• IVFFlat

aws

- K-means based
- Organize vectors into lists
- Requires prepopulated data
- Insert time bounded by # lists

• HNSW

- Graph based
- Organize vectors into "neighborhoods"
- Iterative insertions
- Insertion time increases as data in graph increases

Which search method do I choose?

Exact nearest neighbors: No index

Fast indexing: IVFFlat

Easy to manage: HNSW

High performance/recall: HNSW

Best practices for pgvector

- Storage strategies
- **HNSW** strategies
- Quantization
- Filtering

Best practices: Vector storage

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How does PostgreSQL store vectors?

- Page: PostgreSQL atomic storage unit
 - 8192 bytes = 8K = 8KiB
- Heap (table) pages are resizable as a compile time flag
- Index pages are not resizable
- This is a real (^{CO}) problem for vectors
 - 1536-dim 4-byte vector = 6KiB
 - 3072-dim 4-byte vector = 12KiB

TOAST – handling larger data

- TOAST (<u>The</u> <u>Oversized</u>-<u>A</u>ttribute <u>S</u>torage <u>T</u>echnique) is a mechanism for storing data larger than 8KB
 - By default, PostgreSQL "TOASTs" values over 2KB (510d 4-byte float)
- Storage types:
 - PLAIN: Data stored inline with table
 - EXTENDED: Data stored/compressed in TOAST table when threshold exceeded
 - pgvector default before 0.6.0
 - EXTERNAL: Data stored in TOAST table when threshold exceeded
 - pgvector default 0.6.0+
 - MAIN: Data stored compressed inline with table

Visualizing TOAST for pgvector

PLAIN

EXTENDED / EXTERNAL

Impact of TOAST on vector data

- Traditionally, TOAST data is not on the "hot path"
 - Impacts query plan and maintenance operations
- Compression is ineffective
- Unable to use for index pages

Impact of TOAST on pgvector queries

Limit (cost=772135.51..772136.73 rows=10 width=12)

-> Gather Merge (cost=772135.51..1991670.17 rows=10000002 width=12)

Workers Planned: 6

-> sort (cost=771135.42..775302.08 rows=16666667 width=12)

Sort Key: ((<-> embedding))

-> Parallel Seq Scan on vecs128 (cost=0.00..735119.34 rows=16666667 width=12)

128 dimensions

Impact of TOAST on pgvector queries

Limit (cost=149970.15..149971.34 rows=10 width=12)

-> Gather Merge (cost=149970.15..1347330.44 rows=10000116 width=12)

Workers Planned: 4

-> sort (cost=148970.09..155220.16 rows=2500029 width=12)

Sort Key: ((\$1 <-> embedding))

-> Parallel Seq Scan on vecs1536 (cost=0.00..94945.36 rows=2500029 width=12)

1,536 dimensions

Strategies for pgvector and TOAST

• Use PLAIN storage

- ALTER TABLE ... ALTER COLUMN ... SET STORAGE PLAIN
- Requires table rewrite (VACUUM FULL) if data already exists
- Limits vector sizes to 2,000 dimensions
- Use min_parallel_table_scan_size to induce more parallel workers

TOAST is currently not available for indexes

Impact of TOAST on pgvector queries

Limit (cost=95704.33..95705.58 rows=10 width=12)

-> Gather Merge (cost=95704.33..1352239.13 rows=10000111 width=12)

Workers Planned: 11

-> sort (cost=94704.11..96976.86 rows=909101 width=12)

Sort Key: ((\$1 <-> embedding))

-> Parallel Seq Scan on vecs1536 (cost=0.00..75058.77 rows=909101 width=12)

1,536 dimensions

SET min_parallel_table_scan_size TO 1

Best practices: HNSW best practices

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

HNSW index building parameters

m

Maximum number of bidirectional links between indexed vectors Default: 16

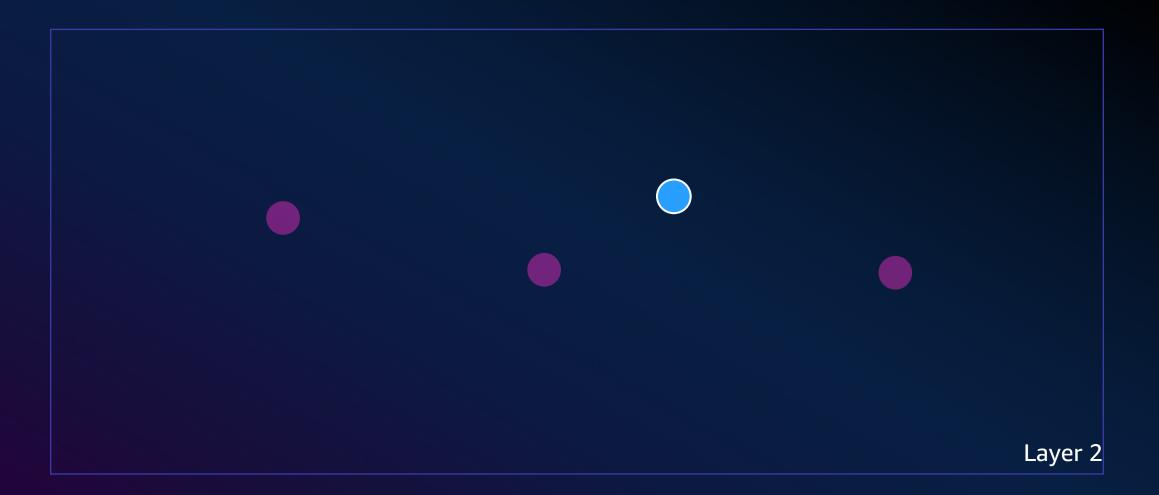
ef_construction

Number of vectors to maintain in "nearest neighbor" list Default: 64

Recommendation: 256

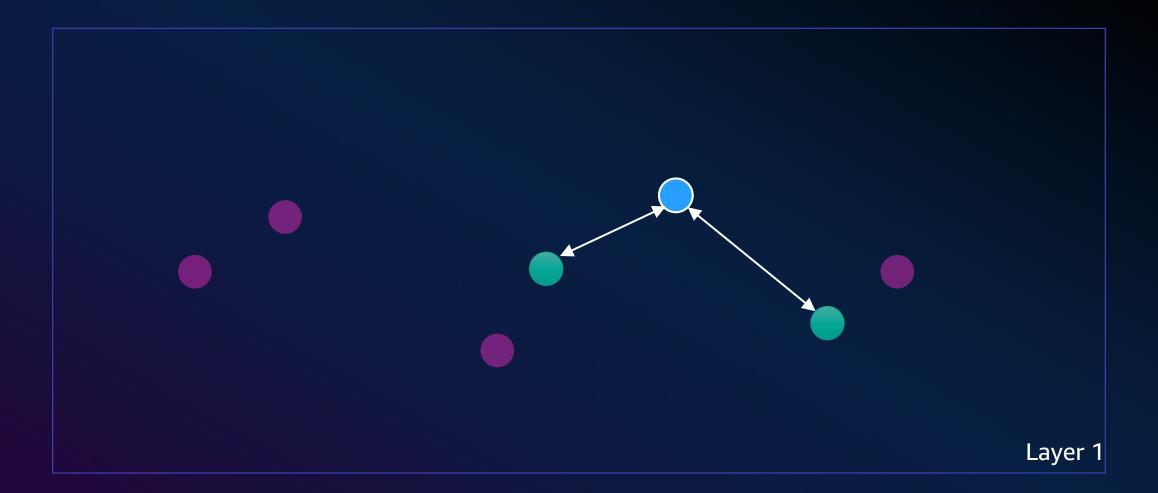
Building an HNSW index

Building an HNSW index

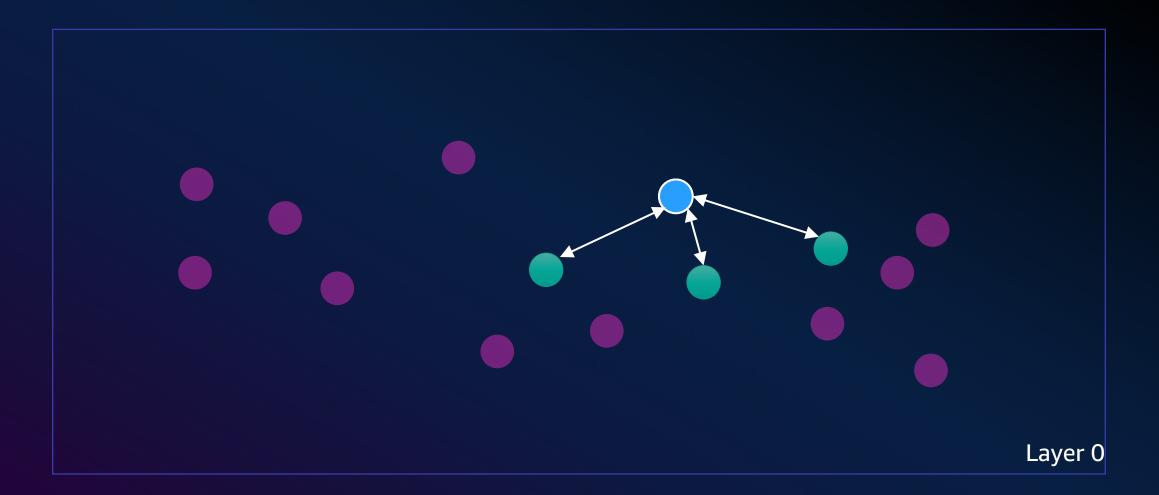


Building an HNSW index

Building an HNSW index



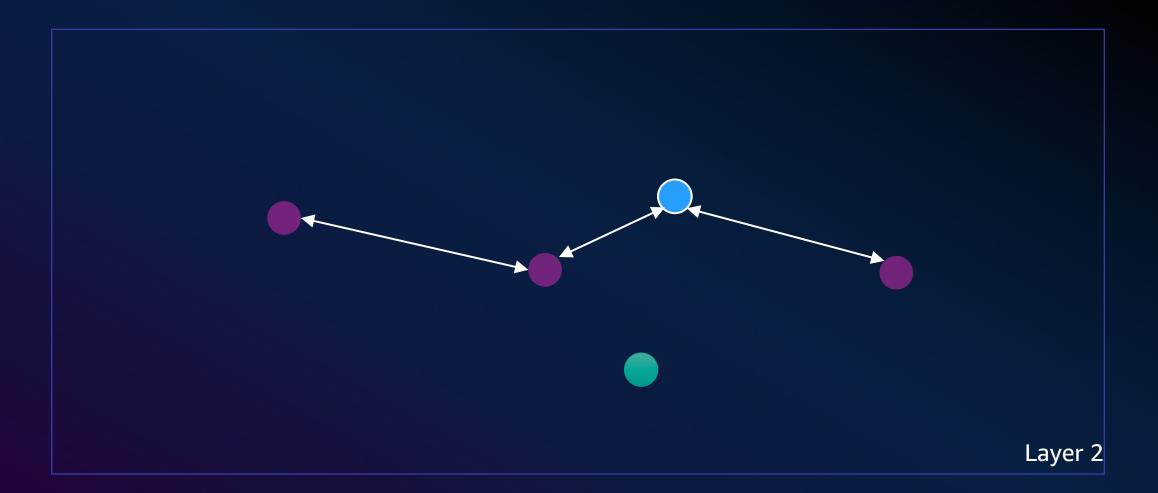
Building an HNSW index

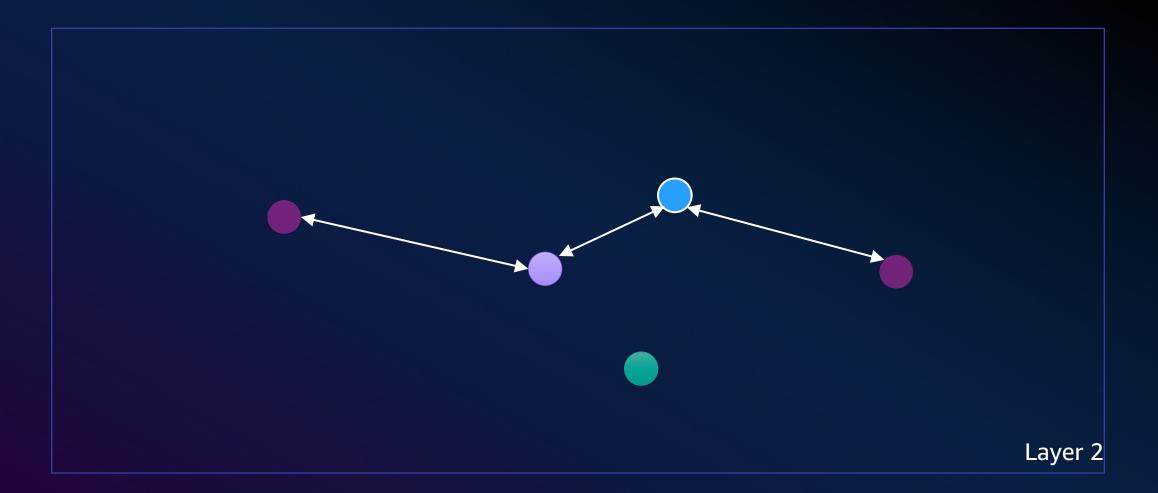


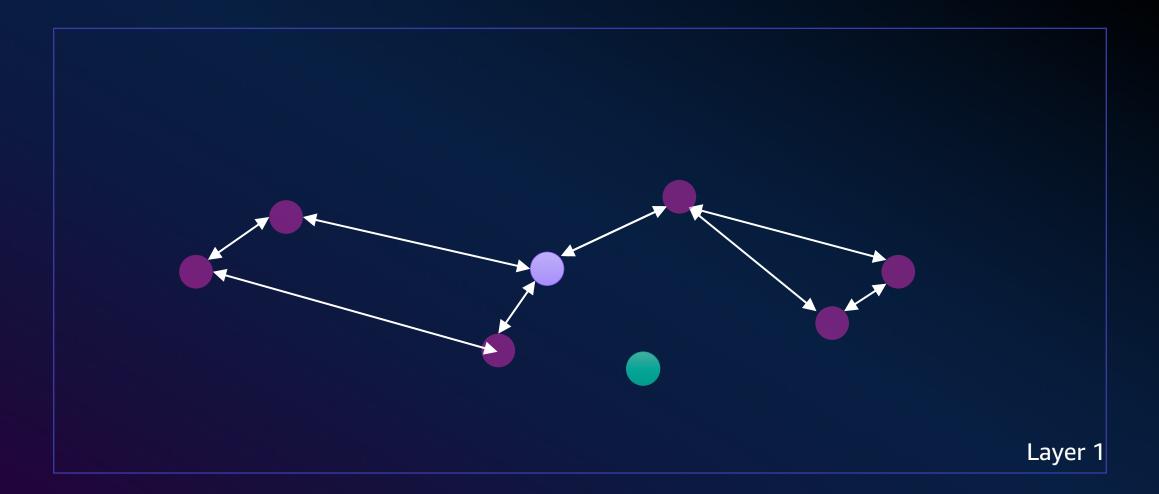
HNSW query parameters

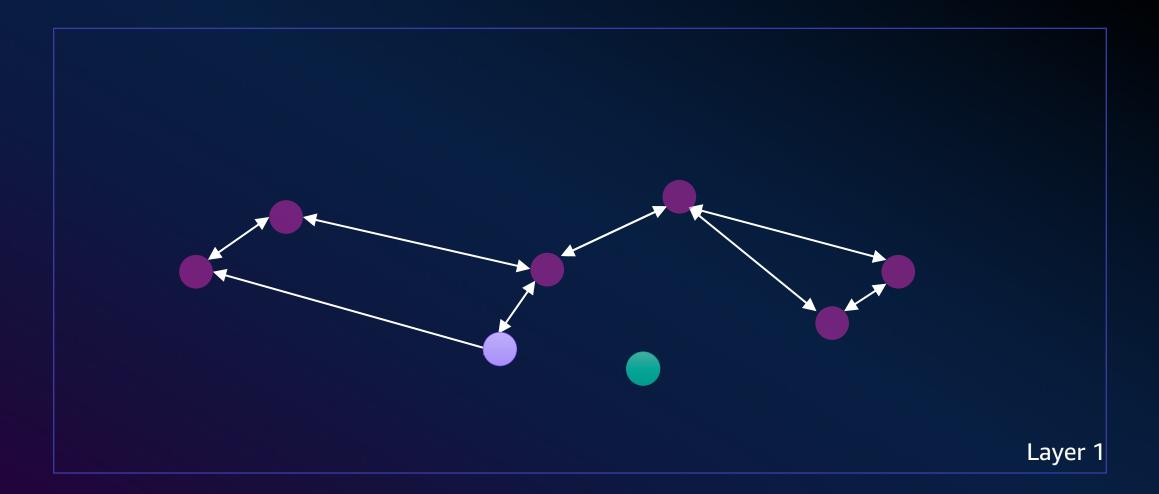
hnsw.ef_search

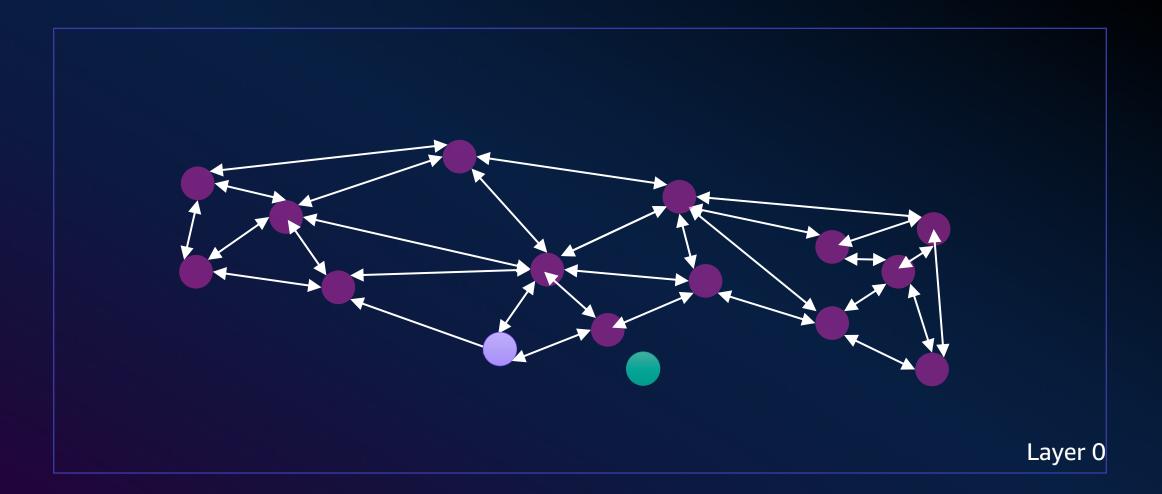
Number of vectors to maintain in "nearest neighbor" list Must be greater than or equal to LIMIT

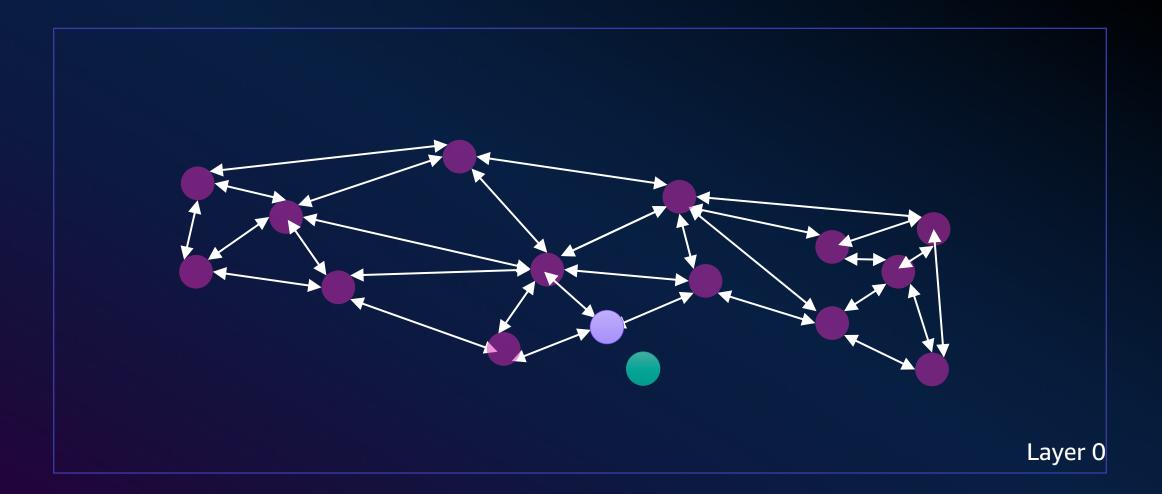






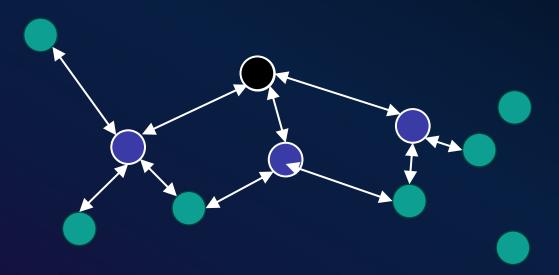






pgvector and HNSW index maintenance

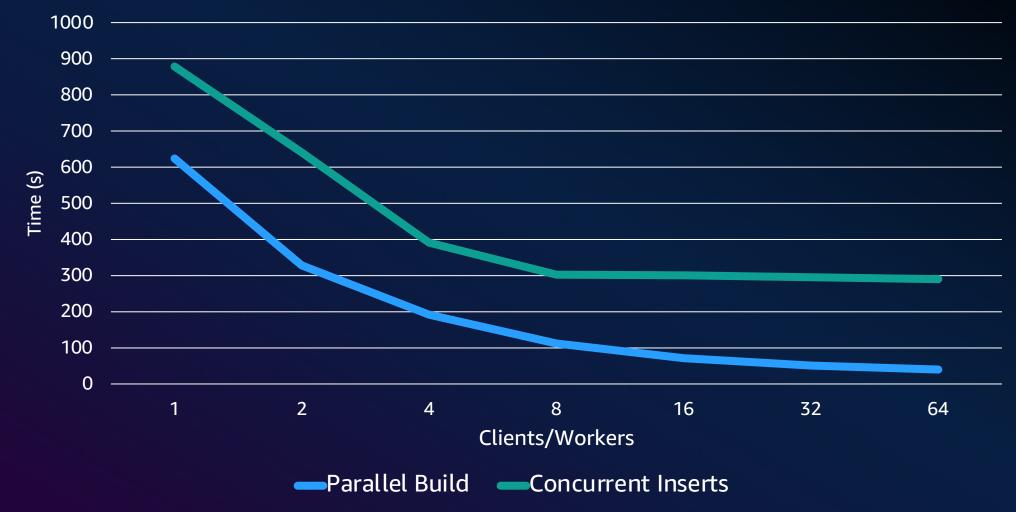
 Innovation: pgvector HNSW implementation supports updates and deletes!



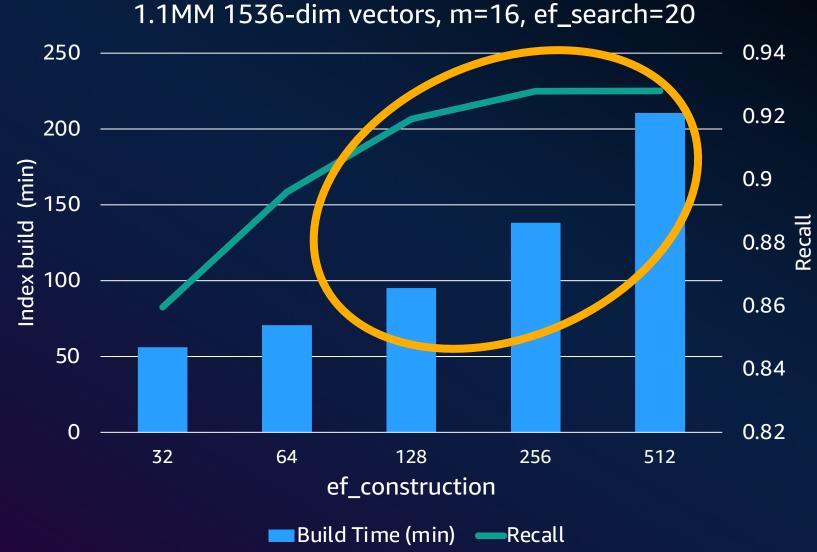
Phase 2: Riepeair

Impact of parallelism on HNSW build time

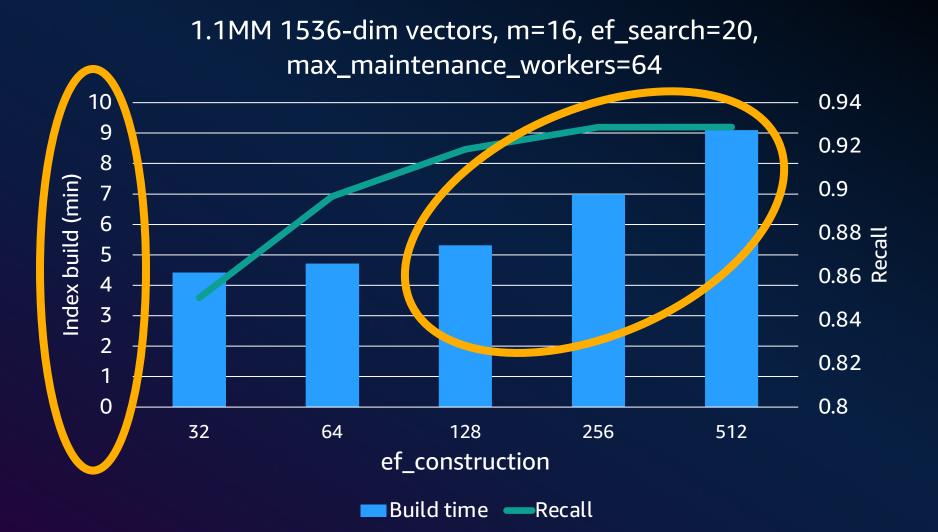
HNSW index build (1,000,000 128-dim vectors)



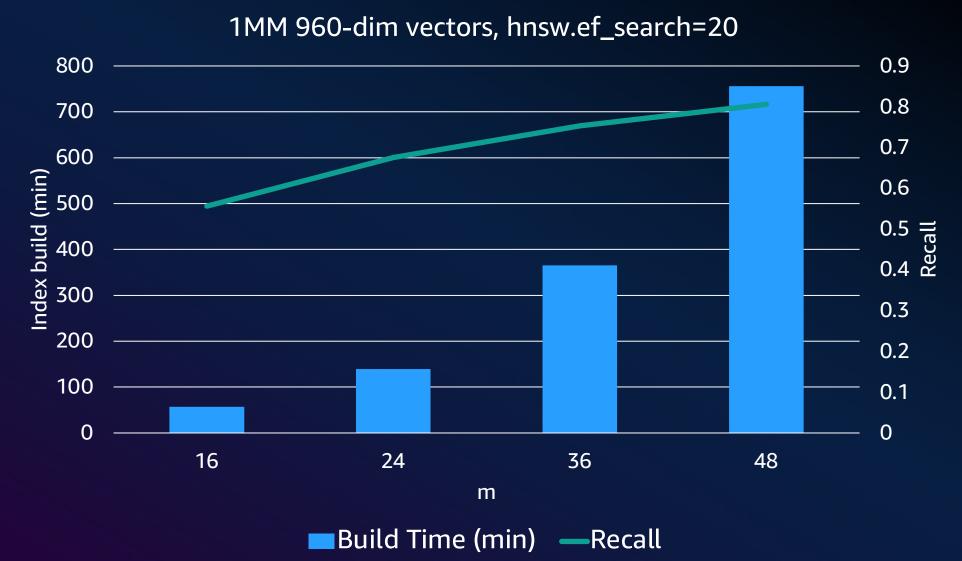
Why index build speed matters (serial build)



Why index build speed matters (parallel build)



How "m" impacts index build time & search quality



Best practices for building HNSW indexes

Start with m=16, ef_construction=256

pgvector (0.5.1) Start with empty table and use concurrent writes to accelerate builds INSERT or COPY

pgvector (0.6.0+) use parallel builds on a full table max_parallel_maintenance_workers

pgvector (0.7.0+) evaluate using quantization to decrease index size

Deep dive: Quantization

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is quantization?

Flat

aws

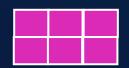
[0.0435122, -0.2304432, -0.4521324, 0.98652234, -0.1123234, 0.75401234]

Scalar quantization (2-byte float)

[0.0432, -0.234, -0.452,0.986, -0.112, 0.751]

Scalar quantization (1-byte uint) [129, 99, 67, 244, 126, 230]

Binary quantization [1, 0, 0, 1, 0, 1]



pgvector and scalar quantization (2 byte)

CREATE INDEX ON documents USING
 hnsw((embedding::halfvec(3072)) halfvec_cosine_ops);

SELECT id
FROM documents
ORDER BY embedding::halfvec(3072) <=> \$1::halfvec(3072)
LIMIT 10;

Impact of scalar quantization

dbpedia-openai-1m-angular (1MM 1,536-dim); m=16; ef_construction=256

	No quantization	2-byte float quantization
Index size (MB)	7734	3867
Index build time (s)	250	146
Recall @ ef_search=10	0.851	0.854
QPS @ ef_search=10	1154	1164
Recall @ ef_search=40	0.967	0.968
QPS @ ef_search=40	567	583
Recall @ ef_search=200	0.996	0.996
QPS @ ef_search=200	158	163

pgvector and binary quantization

CREATE INDEX ON documents USING
 hnsw ((binary_quantize(embedding)::bit(3072)) bit_hamming_ops);

```
SELECT i.id FROM (
    SELECT id, embedding <=> $1 AS distance
    FROM items
    ORDER BY
        binary_quantize(embedding)::bit(3072) <~> binary_quantize($1)
    LIMIT 800 -- bound by hnsw.ef_search
) i
ORDER BY i.distance
LIMIT 10;
```

Impact of binary quantization

dbpedia-openai-1m-angular (1MM 1,536-dim); m=16; ef_construction=256

	No quantization	Binary quantization/rerank		
Index size (MB)	7734	473		
Index build time (s)	250	۸Q		
Recall @ ef_search=10	0.851	0.604		
QPS @ ef_search=10	1154	1687		
Recall @ ef_search=40	0.967	0.916		
QPS @ ef_search=40	567	883		
Recall @ ef_search=200	0.996	0.990		
QPS @ ef_search=200	158	236		

Quantization takeaways

Quantizing a vector may result in losing information

- Binary quantization works best for vectors with "bit diversity"
- Possible to add custom quantization functions

Best practices: Filtering

What is filtering?

SELECT id

- **FROM products**
- WHERE products.category_id = 7
- ORDER BY :'q' <-> products.embedding LIMIT 10;

How filtering impacts ANN queries

PostgreSQL may choose to not use the index

Uses an index, but does not return enough results

Filtering occurs after using the index

Do I need an HNSW index for a filter?

Does the filter use a B-Tree (or other index) to reduce the dataset?

How many rows does the filter remove?

Do I want exact results or approximate results?

Pre-v0.8.0 filtering strategies

Partial index

Partition

aws

CREATE INDEX ON docs USING hnsw(embedding vector_l2_ops) WHERE category_id = 7;

CREATE TABLE docs_cat7 PARTITION OF docs FOR VALUES IN (7);

CREATE INDEX ON docs_cat7 USING hnsw(embedding vector_l2_ops);

Ongoing work

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Performance and filtering improvements

Reduced memory usage for HNSW lookups

Performance improvements to insert / on-disk HNSW index builds

Better planner cost estimates for HNSW lookups

Iterative / streaming scans => better performance / avoids overfiltering

Iterative scans and streaming

	Recall			QPS (peak concurrency)			
ef_search	0.7.4	0.8.0 (planned)	0.7	7.4	0.8.0 (planned)	%	
20	0.874	0.870		27,608	32,810		19%
40	0.934	0.928		19,538	22,235		14%
60	0.956	0.953		14,554	16,839		16%
80	0.968	0.965		10,961	13,410		22%
220	0.989	0.990		4,880	5,506		13%

r7gd.16xlarge (64 vCPU, 512 GiB RAM) OpenAI 5MM (1536d) k=10 HNSW – m=16, ef_construction=256 No quantization

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Iterative scans and streaming

	Recall		QPS (peak concurrency)		
ef_search	0.7.4	0.8.0 (planned)	0.7.4	0.8.0 (planned)	%
80	0.783	0.951	10,626	6,840	-36%
100	0.920	0.921	9,023	10,378	15%
120	0.934	0.934	8,273	8,668	5%
155	0.950	0.950	6,668	6,983	5%
585	0.990	0.990	2,323	2,791	20%

r7gd.16xlarge (64 vCPU, 512 GiB RAM) OpenAI 5MM (1536d) k=100 HNSW – m=16, ef_construction=256 No quantization

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Post-v0.8.0 filtering strategies

- Low selectivity use alternative index (B-tree, GIN)
 - "Too many filters" => JSOB + GIN
- HNSW/IVFFlat + iterative scans
 - hnsw.streaming/ivfflat.streaming
- Streaming can improve query performance with quantization

pgvector roadmap

- Enhanced index-based filtering (in progress)
- Parallelized vacuum
- Parallel query

- Improved async pushdown for postgres_fdw
- TOAST/storage updates

Conclusion

aws

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Conclusion

Primary design decision: Query performance and recall

Determine where to invest: Storage, compute, indexing strategy

Plan for today and tomorrow: vector search capabilities are rapidly evolving

Thank you!

Jonathan Katz

jkatz@amazon.com @jkatz05

