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Overview of generative AI and the role of databases

PostgreSQL as a vector store

pgvector best practices

Ongoing work
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CUSTOMER 

Is it possible to exchange the shoes 
I bought for brown ones?

Valid "api" values are GetOrderHistory::GetProductCatalogue, GetProductAvailability
- DO NOT return an api if all required parameter values are not present.
- DO NOT replace the placeholders in the api_name with api_inputs. 
- Return available parameters in api_inputs ONLY.

Valid "verb" is HTTP verb used in "APIs" e.g. GET, PUT etc

Valid "api_input" as json from "User Input", "Observation" or "Conversation History". 

- NEVER assume value for any parameter, mark the value as "null" if not available. 

Human: You are an agent who manages orders and returns on an online retail website. Given a set of APIs, Conversation History, and U
executing the set of APIs in order to fulfill user input.

Tags

Emphasis
(capitalized)

DO NOT go into a loop and return exact same apis with exact same api_input as previous observation
Convergence 

criteria

Provide only ONE action per $JSON_BLOB, as shown:

{ "api": $API_NAME, "verb": $HTTP_VERB, "api_input": { $PARAMETER: {"value": $INPUT, "source": $SOURCE} } }

Format 
(JSON)

Conversation History: Below is the history of the conversation between Human and AI and the 
History format

1

2

3

4

5

DEVELOPER CREATED AGENT

Of course, do you have your order 
number?
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Pretrained on vast amounts of 
unstructured data

Contain a large number of parameters that make 
them capable of learning complex concepts

Can be applied in a wide range of contexts

Customize FMs using your data for domain-
specific tasks

Generative AI is powered
by foundation models
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Train a foundation model using 
your curated, specialized data  

Training your own 
purpose-built LLM
foundation models

How to provide your data to generative AI 
applications?

Guide foundation models by 
prompting with contextually 

relevant data (RAG)

Context engineering 
using RAG

Fine-tune a foundation model 
using your curated, labeled data

Fine-tuning a 
foundation model
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Retrieval Augmented 
Generation (RAG)

Configure FM to interact with 
your company data

A N S W E RQ U E S T I O N

K N O W L E D G E  
B A S E S

F O U N D A T I O N
M O D E L

How much does a blue 
elephant vase cost?

Product catalog

Price data

A blue elephant vase 
typically costs $19.99

Sorry, I don't know
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What are vector embeddings?

Source 
domain-

specific data
Tokenization Vectorization Store in vector 

data store

Perform 
semantic 
similarity 

search

Include 
semantically 

similar context 
in prompt

Embeddings: When vector elements are semantic, used in generative AI

Documents

Audio/video

Images

Semantic elements:
• Words, phrases
• Paragraphs, documents
• Scenes, song sections
• Faces, detected

picture elements
• And more

0.35 0.1 0 0.9 001.0 00 0001.0 0 0…

0.35 0.1 0 0.8 001.0 00 0001.0 0 0…

0.15 0.1 0 0.7 001.0 00 0001.0 0 0…

3D simplified representation. Embeddings can have thousands of 
dimensions. Source: https://daleonai.com/embeddings-explained 

https://daleonai.com/embeddings-explained
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The role of vectors in RAG

Document 
chunks

EmbeddingsPDF 
document

Database

User

Embeddings Foundation 
model

1

4

Question

Question + Context

Response

2 3

5

6

7
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Challenges with vectors

• Time to generate embeddings

• Embedding size

• Compression

• Query time

Blue elephant vase 
that can hold up to 
three plants in it, 
hand painted…

0.1234
0.1231
0.1232
0.9005
0.2489

1,536 dimensions

4-byte floats

6,152 B => 6 KiB

0.12310
0.24234
0.59405
0.23430
0.23432
0.20551
0.70543
0.20559

0.20559
0.70543
0.23432
0.24234
0.23430
0.12310
0.20551
0.59405

1,000,000 => 5.7 GB
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Approximate nearest neighbor (ANN)

• Find similar vectors without 
searching all of them

• Faster than exact nearest neighbor

• “Recall” – % of expected results

Recall: 80%
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ANN indexing algorithm types and tradeoffs

Cluster Graph

Hash Tree
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Considerations for vector storage

PerformanceRelevancy

Cost

Storage
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Questions for choosing a vector storage system

• Where does vector storage fit into my workflow?

• How much data am I storing?

• What matters to me: Storage, performance, relevancy, cost?

• What are my trade-offs: Indexing, query time, schema design?
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PostgreSQL as a vector store
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Why use PostgreSQL for vector searches?

Existing client libraries work 
without modification

May require an upgrade

Convenient to co-locate app + AI/ML 
data in same database 

Interfacing with PostgreSQL storage 
gives ACID transactional storage

Postgres, PostgreSQL, and the Slonik Logo are trademarks or registered trademarks 
of the PostgreSQL Community Association of Canada, and used with their permission.
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Why care about ACID for vectors?

• Atomicity: "All or nothing" stored in transaction (bulk loads)

• Consistency: Follows rules for other data stored in database

• Isolation: Correctness in returned results; committed transactions 
"immediately available"

• Durability: One committed, vectors are safely stored.
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What is pgvector?

Adds support for storage, indexing, searching, metadata with choice of distance

vector data type

Supports HNSW & IVFFlat indexing, with
options for scalar and binary quantization Distance operations include

Cosine, Euclidean/L2, Manhattan/L1,
Dot product, Hamming, Jaccard

Exact nearest neighbor (K-NN)
Approximate nearest neighbor (ANN)

Co-locate with embeddings

github.com/pgvector/pgvector

https://github.com/pgvector/pgvector


© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

2023
Vector searches in PostgreSQL

"It was there"

Can use existing PostgreSQL drivers

Open source

C-based

2024
High performance vector searches

Support for larger vectors

Sustained, rapid improvements

Better support in developer tools

18

Why pgvector?
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pgvector: Year-in-review timeline
• v0.4.x (1/2023 – 6/2023)

§ Improved IVFFlat plan costs

§ Increasing dimension of vectors stored in table + index

• v0.5.x (8/2023 – 10/2023)

§ Add HNSW index + distance function performance improvements

§ Parallel IVFFlat builds

• v0.6.x (1/2024 – 3/2024)

§ Parallel HNSW index builds + in-memory build optimizations

• v0.7.x (4/2024)

§ halfvec (2-byte float), bit(n) index support, sparsevec (up to 1B dim)

§ Quantization (scalar/binary), Jaccard/hamming distance, explicit SIMD

19
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Indexing methods: IVFFlat and HNSW

• IVFFlat
§ K-means based

§ Organize vectors into lists

§ Requires prepopulated data
§ Insert time bounded by # lists

• HNSW
§ Graph based

§ Organize vectors into 
“neighborhoods”

§ Iterative insertions

§ Insertion time increases as data in 
graph increases 
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Which search method do I choose?

Exact nearest neighbors: No index

Fast indexing: IVFFlat

Easy to manage: HNSW

High performance/recall: HNSW
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Best practices for pgvector

Storage strategies

HNSW strategies

Quantization

Filtering



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Best practices: Vector storage
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How does PostgreSQL store vectors?
• Page: PostgreSQL atomic storage unit

§ 8192 bytes = 8K = 8KiB

• Heap (table) pages are resizable as a compile time 
flag

• Index pages are not resizable

• This is a real (😉) problem for vectors

§ 1536-dim 4-byte vector = 6KiB

§ 3072-dim 4-byte vector = 12KiB
24
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🍞 TOAST – handling larger data

• TOAST (The Oversized-Attribute Storage Technique) is a mechanism 
for storing data larger than 8KB
§ By default, PostgreSQL “TOASTs” values over 2KB (510d 4-byte float)

• Storage types:
§ PLAIN: Data stored inline with table

§ EXTENDED: Data stored/compressed in TOAST table when threshold exceeded
– pgvector default before 0.6.0

§ EXTERNAL: Data stored in TOAST table when threshold exceeded
– pgvector default 0.6.0+

§ MAIN: Data stored compressed inline with table

25
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Visualizing TOAST for pgvector

26

12,"jkatz",[0.3213,0.
12321,0.12312,0.12
321,0.12321,0.1232
1,0.1123123,0.1232
1,0.12321,0.1232,0.
12312,0.12321,0.12
321,0.12312]

PLAIN

12,"jkatz",12345678 [0.3213,0.12321,0.1
2312,0.12321,0.123
21,0.12321,0.11231
23,0.12321,0.12321
,0.1232,0.12312,0.1
2321,0.12321,0.123
12]

EXTENDED / EXTERNAL
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Impact of TOAST on vector data

• Traditionally, TOAST data is not on the "hot path"
• Impacts query plan and maintenance operations

• Compression is ineffective

• Unable to use for index pages

27
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Impact of TOAST on pgvector queries

Limit (cost=772135.51..772136.73 rows=10 width=12)

-> Gather Merge (cost=772135.51..1991670.17 rows=10000002 width=12)

    Workers Planned: 6

    -> Sort (cost=771135.42..775302.08 rows=1666667 width=12)

        Sort Key: ((<-> embedding))

        -> Parallel Seq Scan on vecs128 (cost=0.00..735119.34 rows=1666667 
width=12)

128 dimensions
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Impact of TOAST on pgvector queries

Limit (cost=149970.15..149971.34 rows=10 width=12)

-> Gather Merge (cost=149970.15..1347330.44 rows=10000116 width=12)

    Workers Planned: 4

    -> Sort (cost=148970.09..155220.16 rows=2500029 width=12)

        Sort Key: (($1 <-> embedding))

        -> Parallel Seq Scan on vecs1536 (cost=0.00..94945.36 rows=2500029 
width=12)

1,536 dimensions
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Strategies for pgvector and TOAST

• Use PLAIN storage
§ ALTER TABLE … ALTER COLUMN ... SET STORAGE PLAIN

§ Requires table rewrite (VACUUM FULL) if data already exists

§ Limits vector sizes to 2,000 dimensions

• Use min_parallel_table_scan_size to induce more parallel 
workers

• TOAST is currently not available for indexes
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Impact of TOAST on pgvector queries

Limit (cost=95704.33..95705.58 rows=10 width=12)

-> Gather Merge (cost=95704.33..1352239.13 rows=10000111 width=12)

    Workers Planned: 11

    -> Sort (cost=94704.11..96976.86 rows=909101 width=12)

        Sort Key: (($1 <-> embedding))

        -> Parallel Seq Scan on vecs1536 (cost=0.00..75058.77 rows=909101 width=12)

1,536 dimensions

SET min_parallel_table_scan_size TO 1
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Best practices: HNSW best practices
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HNSW index building parameters

m
Maximum number of bidirectional links between indexed vectors

Default: 16

ef_construction
Number of vectors to maintain in “nearest neighbor” list

Default: 64

Recommendation: 256
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Building an HNSW index
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Building an HNSW index

Layer 2
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Building an HNSW index

Layer 2
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Building an HNSW index

Layer 1
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Building an HNSW index

Layer 0
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HNSW query parameters

hnsw.ef_search
Number of vectors to maintain in “nearest neighbor” list

Must be greater than or equal to LIMIT
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Querying an HNSW index

Layer 2
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Querying an HNSW index

Layer 2
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Querying an HNSW index

Layer 1
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Querying an HNSW index

Layer 1
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Querying an HNSW index

Layer 0
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Querying an HNSW index

Layer 0
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pgvector and HNSW index maintenance

• Innovation: pgvector HNSW implementation supports updates and 
deletes!

Phase 1: HidePhase 2: Repair
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Impact of parallelism on HNSW build time

0
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HNSW index build (1,000,000 128-dim vectors)

Parallel Build Concurrent Inserts
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Why index build speed matters (serial build)

0.82
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Build Time (min) Recall
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Why index build speed matters (parallel build)
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How “m” impacts index build time & search quality

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

100

200

300

400

500

600

700

800

16 24 36 48

Re
ca

ll

In
de

x 
bu

ild
 (m

in
)

m

1MM 960-dim vectors, hnsw.ef_search=20

Build Time (min) Recall



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Best practices for building HNSW indexes

Start with m=16, ef_construction=256

pgvector (0.5.1) Start with empty table and use concurrent writes to 
accelerate builds

INSERT or COPY

pgvector (0.6.0+) use parallel builds on a full table
max_parallel_maintenance_workers

pgvector (0.7.0+) evaluate using quantization to decrease index size
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Deep dive: Quantization
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What is quantization?

[0.0435122, -0.2304432, -0.4521324,
 0.98652234, -0.1123234, 0.75401234]

Flat

[0.0432, -0.234, -0.452,0.986,
-0.112, 0.751]

Scalar quantization (2-byte float)

[1, 0, 0, 1, 0, 1]

Binary quantization

[129, 99, 67, 244, 126, 230]

Scalar quantization (1-byte uint)
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pgvector and scalar quantization (2 byte)

CREATE INDEX ON documents USING

 hnsw((embedding::halfvec(3072)) halfvec_cosine_ops);

SELECT id

FROM documents

ORDER BY embedding::halfvec(3072) <=> $1::halfvec(3072)

LIMIT 10;
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Impact of scalar quantization

No quantization 2-byte float quantization

Index size (MB) 7734 3867

Index build time (s) 250 146

Recall @ ef_search=10 0.851 0.854

QPS @ ef_search=10 1154 1164

Recall @ ef_search=40 0.967 0.968

QPS @ ef_search=40 567 583

Recall @ ef_search=200 0.996 0.996

QPS @ ef_search=200 158 163

dbpedia-openai-1m-angular (1MM 1,536-dim); m=16; ef_construction=256
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pgvector and binary quantization
CREATE INDEX ON documents USING

 hnsw ((binary_quantize(embedding)::bit(3072)) bit_hamming_ops);

SELECT i.id FROM (

 SELECT id, embedding <=> $1 AS distance

 FROM items

 ORDER BY

   binary_quantize(embedding)::bit(3072) <~> binary_quantize($1)

 LIMIT 800 -- bound by hnsw.ef_search

) i

ORDER BY i.distance

LIMIT 10;
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Impact of binary quantization

No quantization Binary quantization/rerank

Index size (MB) 7734 473

Index build time (s) 250 49

Recall @ ef_search=10 0.851 0.604

QPS @ ef_search=10 1154 1687

Recall @ ef_search=40 0.967 0.916

QPS @ ef_search=40 567 883

Recall @ ef_search=200 0.996 0.990

QPS @ ef_search=200 158 236

dbpedia-openai-1m-angular (1MM 1,536-dim); m=16; ef_construction=256
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Quantization takeaways

• Quantizing a vector may result in losing information

• Binary quantization works best for vectors with “bit diversity”

• Possible to add custom quantization functions
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Best practices: Filtering
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What is filtering?

SELECT id

FROM products

WHERE products.category_id = 7

ORDER BY :'q' <-> products.embedding

LIMIT 10;
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How filtering impacts ANN queries

PostgreSQL may choose to not use the index

Uses an index, but does not return enough results

Filtering occurs after using the index
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Do I need an HNSW index for a filter?

Does the filter use a B-Tree (or other index) to reduce the dataset?

How many rows does the filter remove?

Do I want exact results or approximate results?
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Pre-v0.8.0 filtering strategies

• Partial index

• Partition

CREATE INDEX ON docs

  USING hnsw(embedding vector_l2_ops)

  WHERE category_id = 7;

---

CREATE TABLE docs_cat7

  PARTITION OF docs

  FOR VALUES IN (7);

CREATE INDEX ON docs_cat7

 USING hnsw(embedding vector_l2_ops);
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Ongoing work
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Performance and filtering improvements

Reduced memory usage for HNSW lookups

Performance improvements to insert / on-disk HNSW index builds

Better planner cost estimates for HNSW lookups

Iterative / streaming scans => better performance / avoids overfiltering
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Iterative scans and streaming

Recall QPS (peak concurrency)

ef_search 0.7.4 0.8.0 (planned) 0.7.4 0.8.0 (planned) %

20 0.874 0.870 27,608 32,810 19%

40 0.934 0.928 19,538 22,235 14%

60 0.956 0.953 14,554 16,839 16%

80 0.968 0.965 10,961 13,410 22%

220 0.989 0.990 4,880 5,506 13%

https://github.com/zilliztech/VectorDBBench

r7gd.16xlarge (64 vCPU, 512 GiB RAM)
OpenAI 5MM (1536d)
k=10
HNSW – m=16, ef_construction=256
No quantization
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Iterative scans and streaming

https://github.com/zilliztech/VectorDBBench

r7gd.16xlarge (64 vCPU, 512 GiB RAM)
OpenAI 5MM (1536d)
k=100
HNSW – m=16, ef_construction=256
No quantization

Recall QPS (peak concurrency)

ef_search 0.7.4 0.8.0 (planned) 0.7.4 0.8.0 (planned) %
80 0.783 0.951 10,626 6,840 -36%

100 0.920 0.921 9,023 10,378 15%
120 0.934 0.934 8,273 8,668 5%
155 0.950 0.950 6,668 6,983 5%
585 0.990 0.990 2,323 2,791 20%
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Post-v0.8.0  filtering strategies

• Low selectivity – use alternative index (B-tree, GIN)
§ "Too many filters" => JSOB + GIN

• HNSW/IVFFlat + iterative scans
§ hnsw.streaming / ivfflat.streaming

• Streaming can improve query performance with quantization
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pgvector roadmap

• Enhanced index-based filtering (in progress)

• Parallelized vacuum

• Parallel query

• Improved async pushdown for postgres_fdw

• TOAST/storage updates
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Conclusion
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Conclusion

Primary design decision: Query performance and recall

Determine where to invest: Storage, compute, indexing strategy

Plan for today and tomorrow: vector search capabilities are rapidly 
evolving
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Thank you!
Jonathan Katz
jkatz@amazon.com
@jkatz05
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