
© Fujitsu 2025Fujitsu - Public 1 © Fujitsu 2025Fujitsu - Public

Unlocking new possibilities:

The evolving landscape of

PostgreSQL Logical Replication

Amit Kapila

PostgreSQL Committer and Major Contributor

Fujitsu

© Fujitsu 2025Fujitsu - Public 2

Evolution of logical replication in PostgreSQL

≤10

• Logical Replication

• Decoding, Replica identity & Replication slots

• Track commit timestamp & replication progress

• Support generic WAL messages for logical decoding

2017

13

• logical_decoding_work_mem

• Replicate partitioned table

• max_slot_wal_keep_size

2020

16

2023

17

2024

11

• Replicate TRUNCATE

• Reduce memory usage

2018

12

• Allow replication slots
to be copied

2019

18

2025

14

• Streaming of in-progress transactions

• Decoding of prepared transactions

• Allow data to be transferred in binary mode

• Performance improvements

2021

15

• Replication of prepared transactions

• FOR ALL TABLES IN SCHEMA

• Row filter/Column Lists

• SKIP transaction

• Disable subscription on error

2022

• Failover slot sync
• Upgrade of slots/subscriptions
• Pg_createsubscriber tool

• Logical replication from standby
• Parallel apply of streaming txn

• Conflict detection & logging
• Replication of generated columns
• Idle_replication_slot_timeout

© Fujitsu 2025Fujitsu - Public 3

Key empowering features

2023 2024 2025 2026 2027

Performance

Parallel Apply
(Streaming transaction)

Parallel Apply
(All transaction)

Released In plan Future TBD

PG19/20PG16

© Fujitsu 2025Fujitsu - Public 4

Key empowering features

Performance

High Availability

Parallel Apply
(Streaming transaction)

PG16

Parallel Apply
(All transaction)

PG19/20

Failover Slots

PG17

Upgrade
(Logical Replica)

PG17

Sequence Sync

PG19

Online wal_level
change

PG19

2023 2024 2025 2026 2027

Released In plan Future TBD

© Fujitsu 2025Fujitsu - Public 5

Key empowering features

Performance

High Availability

Distributed

Parallel Apply
(Streaming transaction)

PG16

Conflict Resolution
(Built-in resolvers)

PG19/20

Parallel Apply
(All transaction)

PG19/20

Conflict Detection &
Logging

PG18

Conflict Storage
(Conflict History Table)

PG19

Conflict Detection
(UPDATE_DELETED)

PG19

Failover Slots

PG17

Upgrade
(Logical Replica)

PG17

Sequence Sync

PG19

Online wal_level
change

PG19

2023 2024 2025 2026 2027

Released In plan Future TBD

© Fujitsu 2025Fujitsu - Public 6

Key empowering features

Performance

High Availability

Distributed

Parallel Apply
(Streaming transaction)

PG16

Parallel Apply
(All transaction)

PG19/20

2023 2024 2025 2026 2027

Failover Slots

PG17

Upgrade
(Logical Replica)

PG17

Sequence Sync

PG19

Online wal_level
change

PG19

Conflict Resolution
(Built-in resolvers)

PG19/20

Conflict Detection &
Logging

PG18

Conflict Storage
(Conflict History Table)

PG19

Conflict Detection
(UPDATE_DELETED)

PG19

Released In plan Future TBD

© Fujitsu 2025Fujitsu - Public 7

Parallel Apply (streaming transactions)

● Enabled faster and more efficient replication of large transactions

● Subscriber can start applying the large in-progress transaction IMMEDIATLY without waiting for txn COMMIT using the
parallel workers.

● Configurations:

● Users must set the subscription parameter streaming to parallel. This is the default from PG18 onwards.

● The parallelism can be tuned by parameter max_parallel_apply_workers_per_subscription.

postgres=# CREATE SUBSCRIPTION sub CONNECTION 'dbname=postgres’

PUBLICATION pub WITH (streaming = parallel);

NOTICE: created replication slot "sub" on publisher

CREATE SUBSCRIPTION

postgres=# SELECT subname, substream FROM pg_subscription;

subname | substream

---------+-----------

sub | p

(1 row)

max_parallel_apply_workers_per_subscription = 5

1/4

© Fujitsu 2025Fujitsu - Public 8

Parallel Apply (streaming transactions)

Subscriber nodePublisher node

Backend

BEGIN;
INSERT …;

-- keep writing
……

COMMIT;

Walsender Apply worker

DB

Send all the decoded data of the transaction at once

STREAM COMMIT;

Parallel Apply worker

Apply worker starts
parallel apply worker

Data is applied
immediately

Keep decoding WAL records

2/4

When the memory limit is exceeded,
decoded data is sent to subscriber

Apply worker sends messages
to parallel apply worker

© Fujitsu 2025Fujitsu - Public 9

Parallel Apply (streaming transactions)

Performance improvements (data vs time)

● Synchronous logical replication system

● Setup: Publisher → Subscriber on the same machine with:

● Workload: 1 million to 10 million inserts on a single table

● Time measured: Time taken from insert to commit

● Results:

● Elapsed time improved by ~2X with parallel apply.

● As the number of tuples increases, parallel apply provides greater
benefit since transactions are applied immediately, significantly
reducing replication lag between publisher and subscriber.

shared_buffers = 100GB
checkpoint_timeout = 30min
max_wal_size = 20GB
min_wal_size = 10GB
autovacuum = off
synchronous_commit = remote_apply
logical_decoding_work_mem = 30MB

Machine details

Intel(R) Xeon(R) CPU E7-4890 v2 @ 2.80GHz
CPU(s) :88 cores, - 503 GiB RAM

3/4

0

20

40

60

80

100

120

140

0 2000000 4000000 6000000 8000000 10000000

e
la

p
s
e

d
 t
im

e
 [
s
e

c
]

number of tuples

streaming = on

streaming = parallel

streaming = off

© Fujitsu 2025Fujitsu - Public 10

Parallel Apply (streaming transactions)

Performance improvements (memory vs time)

● Synchronous logical replication system

● Setup: Publisher → Subscriber on the same machine with:

● Workload: 5 million inserts on a single table with 10 MB to 60MB
logical decoding work memory

● Time measured: Time taken from insert to commit

● Results:

● Elapsed time improved by ~2X with parallel apply.

● As the logical decoding work memory increases, parallel apply provides greater benefit since transactions are applied
immediately, significantly reducing replication lag between publisher and subscriber.

shared_buffers = 100GB
checkpoint_timeout = 30min
max_wal_size = 20GB
min_wal_size = 10GB
autovacuum = off
synchronous_commit=remote_apply

4/4

0

10

20

30

40

50

60

70

0 10000 20000 30000 40000 50000 60000 70000

e
la

p
s
e

d
 t
im

e
 [
s
e

c
]

logical_decoding_work_mem [kB]

streaming = on streaming = parallel streaming = off

© Fujitsu 2025Fujitsu - Public 11

Parallel Apply (all transactions)

Background & design goals

● Current Limitation: PostgreSQL’s single apply process for a subscription

can become a bottleneck in high-throughput systems.

● Existing Parallelism: Only large streaming transactions (streaming=parallel)

can use multiple workers.

● Proposal: Extend parallelism to non-streaming, frequent small transactions for

better replication throughput.

Challenges

● Must respect transaction dependencies to avoid failures or deadlocks.

● Must maintain replication consistency even with out-of-order commits.

Design goals

● Apply independent transactions concurrently.

● Detect & serialize dependent transactions.

● Support safe, restart-consistent replication.

1/5

© Fujitsu 2025Fujitsu - Public 12

Parallel Apply (all transactions)

Core mechanisms

Dependency detection

● Hash Table Tracking: (RelationId, ReplicaIdentity, Unique Keys) → track XID ownership.

● Unique Key Conflicts: Prevent incorrect ordering that causes constraint violations.

● Foreign Keys: Check FK references across tables (e.g., owner → car).

● Safe Exclusions: Don’t parallelize xacts on tables with user-defined triggers/complex constraints in v1.

Coordination by the leader Apply Worker

● Detects dependencies.

● Dispatches independent transactions to parallel workers and let them execute.

● Enforces ordering where required.

Replication progress tracking

● Track the lowest, highest, and list of commit LSNs to ensure correct recovery after crash/restart:

● During recovery, resume safely from lowest_remote_lsn and skip already applied commits

2/5

Optional: Preserve commit order for users relying on app-level integrity (no explicit PK/FK).

© Fujitsu 2025Fujitsu - Public 13

Parallel Apply (all transactions)

Subscriber node

Apply worker

DB

Parallel Apply worker

Data is applied
immediately

DB

Parallel Apply worker

Starts parallel apply worker for TXN2

Starts parallel apply worker for TXN1

● Improved Throughput: Multiple apply workers process

transactions in parallel, reducing lag between publisher and

subscriber.

● Reduced Latency: Transactions can commit earlier without

waiting for others (unless dependencies exist).

● Scalability: System can scale with workload by increasing

parallel apply workers.

● Dependency Management: Built-in mechanism ensures

correctness by delaying only conflicting transactions.

● Seamless Fallback: If no parallel worker is available, leader apply

worker takes over to maintain progress.

Send TXN1 data

Send TXN2 data

Publisher txns

BEGIN TXN1;
INSERT …;
INSERT …;
INSERT …;

BEGIN TXN2;
INSERT

COMMIT TXN1;

INSERT …;
COMMI TXN2;

3/5

Data is applied
immediately

© Fujitsu 2025Fujitsu - Public 14

Parallel Apply (all transactions)

Test details: Logical replication time improvements

● Replication time improvements measured using pgbench workloads.

● Setup: Publisher → Subscriber on the same machine with:

● Workload: pgbench (read-write) executed on the publisher with:

shared_buffers = 30GB

max_wal_size = 20GB

min_wal_size = 10GB

autovacuum = off

Scale = 300

Clients = 40

Duration = 10 minutes

4/5

Replication time improvements

● Time measured: Time taken by the apply worker to replicate all changes to
the subscriber.

● Results:

● On HEAD (no parallel workers): replication of publisher’s workload takes ~45 minutes.

● With the patch: replication lag reduces sharply as the number of workers increases.

● With 16+ workers, replication completes in only ~12 minutes.

0

5

10

15

20

25

30

35

40

45

50

0(pgHead) 2 4 8 16 32

T
im

e
 [
m

in
u

te
s
]

Parallel Workers

Replication Time

Workload Time at Pub Replication Time at Sub

https://www.postgresql.org/message-id/CABdArM4gv08OWF5Gxndf8cVgO3MVeU9T8z47sZR%3DrUfL1N9bqw%40mail.gmail.com

© Fujitsu 2025Fujitsu - Public 15

Parallel Apply (all transactions)

Test details: Physical vs logical synchronous replication

● Compared the throughput of physical synchronous replication vs logical synchronous
replication

● Setup: Primary → Standby and Publisher → Subscriber on the same machine with:

shared_buffers = 30GB

max_wal_size = 20GB

min_wal_size = 10GB

autovacuum = off

5/5

Synchronous replication throughput improvements

● Workload: pgbench (read-write) executed on the primary/publisher with:

● Measured pgbench throughput when
synchronous_commit=‘remote_apply’ in both physical and logical cases.

● Results:

● On HEAD (no parallel workers), logical replication throughput is 5-6× lower than physical replication.

● With the patch, increasing the number of parallel workers reduces apply lag and boosts publisher throughput.

● With 40 workers, throughput improved by ~5×, reaching very close to physical synchronous replication throughput.

Scale = 300

Clients = 40

Duration = 20 minutes

0

5000

10000

15000

20000

25000

30000

35000

40000

0 2 4 8 16 32 40

T
P

S

Parallel Workers

Physical vs Logical Sync Replication Throughput

Logical_Sync_Rep Physical_Sync_Rep

https://www.postgresql.org/message-id/CABdArM7z8Pi9bYYSFEzz9Li6%2BONSnspXaU0CxVhDmCUZoSagPw%40mail.gmail.com

© Fujitsu 2025Fujitsu - Public 16

Failover Logical Slots

● Synchronize the logical replication slots from Primary to Standby

● Minimize the downtime of logical replica during failover by eliminating the need of re-
creating the subscription and re-synching the data

● Configurations to make the logical slots eligible for failover

● Set while CREATE SUBSCRIPTION or slot creation

● Using ALTER SUBSCRIPTION

CREATE SUBSCRIPTION sub ... PUBLICATION pub WITH (failover = true);

ALTER SUBSCRIPTION sub DISABLE;

ALTER SUBSCRIPTION sub SET (failover=false);

ALTER SUBSCRIPTION sub ENABLE;

pg_create_logical_replication_slot('slot','test_decoding', false, true, true);

– or –

© Fujitsu 2025Fujitsu - Public 17

Sync the Slots to standby

● Standby server configurations:

● A physical replication slot (primary_slot_name) must be configured

● hot_standby_feedback must be enabled

● A valid dbname must be specified in the primary_conninfo

● Primary server configuration

● synchronized_standby_slots must be set to ensure that logical replica waits for the WAL
to be first received by the physical standby

1/2

© Fujitsu 2025Fujitsu - Public 18

Sync the Slots to standby

● Methods available

1. Using pg_sync_replication_slots() API (Manual)

● Connects to primary → fetches eligible slots.

● Creates/updates synced slots; drops obsolete ones.

● Not allowed if auto-sync is enabled.

2. Automatic Synchronization

● Controlled by sync_replication_slots GUC

● Background slotsync Worker: Periodically syncs eligible slots from primary.

● Adaptive Timing: Sync cycle gap ≥200ms, nap up to 30s based on activity.

2/2

© Fujitsu 2025Fujitsu - Public 19

≤PG16: Availability of logical replica on failover

2 Stop the primary node

$ pg_ctl –D node1 stop

3 Promote the standby

$ pg_ctl -D node2 promote

Node 1
Primary / Publisher

Node 2
Standby

Node 3
Subscriber

Logical Replication

Logical Replication

1 Disable all subscriptions

ALTER SUBSCRIPTION sub_xx DISABLE

4 Truncate all tables

TRUNCATE XXX…

5 Re-create subscriptions

DROP SUBSCRIPTION sub_xx

CREATE SUBSCRIPTION sub_xx

It takes time to recopy
TB/PB again

© Fujitsu 2025Fujitsu - Public 20

PG17: HA of logical replica during failover

1 Stop the primary node

$ pg_ctl –D node1 stop

2 Promote the standby

$ pg_ctl -D node2 promote

Node 1
Primary / Publisher

Node 2
Standby

Node 3
Subscriber

Logical Replication

Logical Replication

3 Change connection info for
subscriptions to the new primary

ALTER SUBSCRIPTION sub_xxx

connection 'node2…'…failover slots are synced
[sync_replication_slots=ON]

© Fujitsu 2025Fujitsu - Public 21

Online Upgrade of Replica

● Before PG17:

● Major upgrades interrupted replication.

● Slots were lost and writes had to be paused until setups were manually reconstructed.

● PG17 or later supports upgrading logical replication setups (publisher/subscriber) without blocking writes,
without needing to recreate replication slots or reattach subscriptions.

● Key Features:

● Logical slot migration: slots can be migrated to the upgraded publisher

● Preserved subscription state: subscriber retains subscription metadata, allowing re-enable after upgrade
without data loss.

● Use case:

● Case 1: Online upgrade of a logical replication cluster.

● Case 2: Upgrade of a streaming replica by temporarily converting it to a logical replica, enabling
seamless upgrade.

© Fujitsu 2025Fujitsu - Public 22

Case1: Upgrade logical replication cluster (PG17)

Node 1
Publisher - PG17

Publisher -PG18+

Node 2
Subscriber - PG17

Logical Replication

Logical Replication

Subscriber - PG18+

1 Disable all subscriptions

ALTER SUBSCRIPTION

sub1_node1_node2 DISABLE

2 Stop and upgrade

$ pg_ctl –D node1 stop

$ pg_upgrade –d node1 …

3 Stop and upgrade

$ pg_ctl –D node2 stop

$ pg_upgrade –d node2 …

4 Define tables that were created in
node1 during upgrade

CREATE TABLE … (if needed)

5 Enable and refresh subscriptions for all
tables

ALTER SUBSCRIPTIONS sub_node1_node2

ENABLE

ALTER SUBSCRIPTIONS sub_node1_node2

REFRESH PUBLICATION

● One node’s upgrade won’t block writes on other
● Subscriber can resume replication after upgrade without any data loss

Here we want to upgrade logical replication clusters from PG17 to PG18+…

© Fujitsu 2025Fujitsu - Public 23

Case2: Upgrade streaming replication cluster (PG17)

Node 1
Primary - PG17

Standby
PG18+

Node 2
Standby – PG17

Logical Replication

Streaming Replication

Primary
PG18+

Streaming Replication

Logical Replication

1 Run pg_createsubscriber

$ pg_createsubscriber –D node2 …

2 Stop and upgrade

$ pg_ctl –D node2 stop

$ pg_upgrade –d node2 …

3 Stop Node1

$ pg_ctl –D node1 stop

4 Run pg_basebackup

$ pg_basebackup –D node2_upgraded –R…

5 Drop subscriptions

DROP SUBSCRIPTION subXX…

Here we want to upgrade streaming replication clusters from PG17 to PG18+…

© Fujitsu 2025Fujitsu - Public 24

Replication of Sequences

● Currently logical replication is used for upgrade of physical replication cluster, but one of the
problem is that the table data will be replicated but the sequences are still at the initial
values, requiring some custom solution that moves the sequences forward enough to
prevent duplicities after upgrade.

● Sequences can now be synced from publisher to subscriber.

● New command to support:

● CREATE PUBLICATION for ALL SEQUENCES;

● A subscription created for publication for “ALL SEQUENCES” allow subscriber to fetch and sync the
sequences from publisher

● ALTER SUBSCRIPTION <sub> REFRESH REPLICATION SEQUENCES;

● REFRESH re-synchronize all the existing sequence value with the updated sequence value from the
publisher

1/2

© Fujitsu 2025Fujitsu - Public 25

Replication of Sequences

● The apply worker spawns a sequence sync worker to fetch & copy sequences from
publisher.

● The page LSN of the sequence from the publisher is also captured and stored in
pg_subscription_rel.

● This LSN will reflect the state of the sequence at the time of synchronization.

● By comparing the current LSN of the sequence on the publisher (via pg_sequence_state()) with the stored
LSN on the subscriber, users can detect if the sequence has advanced and is now out-of-sync.

● This comparison will help determine whether resynchronization is needed for a given sequence.

Use case: Primarily designed to simplify upgrades.

2/2

© Fujitsu 2025Fujitsu - Public 26

Online wal_level change

● Motivation

● Users often run DB instance with wal_level = replica for lower WAL volume and better
performance.

● Enabling logical decoding later (for migration, analytics, CDC) currently requires a server restart,
causing downtime.

● Design Highlights

● Enable logical decoding dynamically in replica mode whenever a logical slot is created, eliminating
the need for a server restart when switching to logical replication.

● New GUC effective_wal_level to monitor the actual WAL level in effect.

● Ensure all running sessions start writing WAL at the logical level before decoding is allowed.

● Keep wal_level = logical for backward compatibility.

Use case: Run in replica mode for minimal overhead, then enable logical decoding on demand
without restart, for high availability.

© Fujitsu 2025Fujitsu - Public 27

Conflict Detection and Logging

● Introduced new types of conflicts detection

INSERT_EXISTS

UPDATE_EXISTS

Inserting/Updating a row that violates a NOT DEFERRABLE
unique constraint

UPDATE_ORIGIN_DIFFERS

DELETE_ORIGIN_DIFFERS

Updating/deleting a row that was previously modified by
another origin. Note that this conflict can only be detected when
track_commit_timestamp is enabled on the subscriber

UPDATE_MISSING

DELETE_MISSING
The tuple to be updated/deleted was not found

UPDATE_DELETED The tuple to be updated was deleted by another origin

MULTIPLE_UNIQUE_CONFLICTS
Inserting or updating a row violates multiple NOT DEFERRABLE unique
constraints

© Fujitsu 2025Fujitsu - Public 28

UPDATE_DELETED

Required to ensure eventual consistency in a bidirectional setup.

● Example: If a remote update arrives after a local delete, the system must detect the delete and compare commit times
to decide the action.

● With only update_missing, users can't distinguish between these two cases:

● When the INSERT (convert update->insert) has to be applied.

● When the UPDATE has to be skipped.

How?

● If remote update < local delete → skip update.

● If remote update > local delete → re-insert row (last-update-wins).

● To support this, deleted tuples must be retained until all concurrent remote txns are flushed locally.

Configuration (as subscription options):

● retain_dead_tuples → to enable detection.

● max_retention_duration → limit how long dead tuples are kept if apply worker lags; 0 (default) = no limit.

© Fujitsu 2025Fujitsu - Public 29

Retention Duration

Publisher Subscriber

Walsender Apply Worker

BEGIN;
UPDATE;
COMMITTING
…
COMMITTED;

● xid: 766
● 0/1566D10
● ts: 9：00

Backend

Get the new candidate non
removable transaction ID

(900)

2

3

1
Create a replication slot

Initial xmin: 898

Request the latest WAL write position and
information about transactions
that are in the commit phase.

Remote transaction
(xid 766) is committing,
needs to check again.

4

5

Request again

Wait for the changes till
0/1566D10

to be applied

6

Backend

Replicate transaction 766

After applying transaction 766,
advance replication slot.xmin to

900

7

● A replication slot is created to retain dead tuples.

● Dead tuples are retained until all remote transactions that
occurred concurrently with the tuple DELETE are applied
and flushed locally.

● The apply worker requests the walsender to get the latest

WAL write position and information about transactions

that are committing.

● Do not proceed if there are concurrent remote

transactions that are committing, because these

transactions might have been assigned an earlier commit

timestamp.

DELETE;
● xid: 899
● ts: 8：59

Logical Launcher

© Fujitsu 2025Fujitsu - Public 30

Conflict Resolution Framework

● Automatic handling of conflicts based on configuration & type.

● Built-in resolvers reduce user effort

● Can be used to achieve eventual consistency in bidirectional replication.

● Flexible control: users specify resolvers per conflict type in subscription DDL.

● The default resolvers for all conflict types are aligned with existing PostgreSQL behavior for consistency.

postgres=# CREATE SUBSCRIPTION <subname> CONNECTION <conninfo> PUBLICATION <pubname> CONFLICT RESOLVER
(conflict_type1 = resolver1, ...);

CREATE SUBSCRIPTION

postgres=# ALTER SUBSCRIPTION <subname> CONFLICT RESOLVER
(conflict_type1 = resolver1, ...);

ALTER SUBSCRIPTION

postgres=# ALTER SUBSCRIPTION <subname> RESET CONFLICT RESOLVER ALL
ALTER SUBSCRIPTION

© Fujitsu 2025Fujitsu - Public 31

Built-in Conflict Resolvers

Resolver Description Applicable for conflicts

apply_remote The remote change is applied

● INSERT_EXISTS
● UPDATE_EXISTS
● MULTIPLE_UNIQUE_CONFLICTS
● UPDATE_ORIGIN_DIFFERS
● DELETE_ORIGIN_DIFFERS

apply_or_skip
Remote change is converted to INSERT and is applied. If the complete row cannot be constructed
from the info provided by the publisher, then the change is skipped

● UPDATE_MISSING
● UPDATE_DELETED

apply_or_error Similar to above but raise an ERROR if cannot convert the remote change to INSERT
● UPDATE_MISSING
● UPDATE_DELETED

keep_local The local version of row is retained

● INSERT_EXISTS
● UPDATE_EXISTS
● MULTIPLE_UNIQUE_CONFLICTS
● UPDATE_ORIGIN_DIFFERS
● DELETE_ORIGIN_DIFFERS

last_update_wins The change with later commit timestamp wins.

● INSERT_EXISTS
● UPDATE_EXISTS
● UPDATE_ORIGIN_DIFFERS
● DELETE_ORIGIN_DIFFERS
● UPDATE_DELETED

error Replication is stopped; manual action is needed. Can be used for any conflict type.

© Fujitsu 2025Fujitsu - Public 32

Viewing Conflict History

● Currently conflict only visible in logs; hard to analyze

● With this feature a new user specified table will be created to store all the details of a conflict:

● table and the tuple details

● conflict type

● remote XID, LSN and commit_time_stamp.

● local XID, LSN and commit_time_stamp

● origin info

● A new subscription option is added to create the user specified table as –

postgres=# CREATE SUBSCRIPTION sub CONNECTION 'dbname=postgres port=5432' PUBLICATION

pub WITH(conflict_log_table=myschema.my_conflict_table);

1/2

© Fujitsu 2025Fujitsu - Public 33

Viewing Conflict History

● Conflict reported in LOG

LOG: conflict detected on relation "public.test": conflict=update_origin_differs

DETAIL: Updating the row that was modified locally in transaction 776 at 2025-09-22 17:14:48.106542+05:30.
Existing local row (1, 10); remote row (1, 20); replica identity (a)=(1).

CONTEXT: processing remote data for replication origin "pg_16391" during message type "UPDATE" for replication target relation
"public.test" in transaction 770, finished at 0/01766E48

postgres-# select * from myschema.my_conflict_table;
-[RECORD 1]-----+---------------------------------
relid | 16385
local_xid | 776
remote_xid | 770
local_lsn | 0/00000000
remote_commit_lsn | 0/01766E48
local_commit_ts | 2025-09-22 17:14:48.106542+05:30
remote_commit_ts | 2025-09-22 17:14:53.090079+05:30
table_schema | public
table_name | test
conflict_type | update_origin_differs
local_origin |
remote_origin | pg_16391
key_tuple | {"a":1,"b":20}
local_tuple | {"a":1,"b":10}
remote_tuple | {"a":1,"b":20}

● Conflict details stored in the table:

2/2

© Fujitsu 2025Fujitsu - Public 34

Features TBD

● Logical replication of DDL commands

● Logical replication of LOB

● Logical replication statistics

● Node initialization, synchronization, resynchronization, pause / resume

● Performance

● Decoding

● Lag catch up

© Fujitsu 2025Fujitsu - Public 35

Summary

Replication performance High Availability of Logical Replica Distributed writes

Parallel Apply: streaming txns Failover logical slots Conflict detection & logging

Parallel Apply: all txns Upgrade of logical replication nodes Built-in conflict resolvers

Synchronization of sequences Conflict storage

Online wal_level change

© Fujitsu 2025Fujitsu - Public 36 © Fujitsu 2025Fujitsu - Public

Thank You!

