POSTGRESQL DISASTER RECOVERY AT SCALE: LESSONS FROM AMAZON RELATIONAL DATABASE SERVICE OPERATIONS

Andrei Dukhounik

Amazon Relational Database Service

Alisdair Owens

Amazon Relational Database Service

Agenda

- Introduction and background
- Database overload
- Hardware failures
- Logical and Physical corruption
- Operational readiness

Introduction and background

Introduction

 Amazon Relational Database Service (Amazon RDS) manages relational databases on behalf of an enormous number of customers.

Including ourselves!

Core system backed by regional RDS for PostgreSQL DBs

Self-Hosting

- We get a lot from RDS!
 - Health monitoring
 - Multi-AZ/failover
 - Reliable backups
 - Replica maintenance
 - etc

Self-Hosting

- We need supplements to safely self-host
 - Complex recovery scenarios rely on core metadata DB availability
 - Instance failover architected to be independent
 - Independent internal service to cover complex recovery scenarios

Scale

TPS	Size	Workload
Several 100K	Multi-TB	Mostly point operations Some complex queries

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Disaster scenarios

Disaster scenarios

Overload

Traffic changes

DB performance cliffs

Physical Failure

Hardware failure AZ/Region outages

Data corruption

Physical corruption Logical corruption

Database overload

Growth Management

Metrics

CPU, IOPS, Storage, etc p99 or p100 **Optimizations**

Connect monitoring -> code

Scaling

Vertical + Horizontal

Traffic Surges

Prevention

Throttling Load shedding Mitigation

Rapid auto-scaling

Performance Cliffs

- Relational databases are not easily predictable at scale
- Query plan flip
- Savepoints
- LWLock contention
- Locks and Deadlocks

Hardware Failures and Corruption

DR Capabilities

Recovery option	Hardware Failure	AZ Outage	Region Outage	Physical Corruption	Logical Corruption
Multi-AZ Failover	?	?	?	?	?
Replica Promotion	?	?	?	?	?
XR Replica	?	?	?	?	?
DML Change Log Recovery	?	?	?	?	?
Delayed Replica	?	?	?	?	?
PITR	?	?	?	?	?
XR PITR	?	?	?	?	?
Logical Dump	?	?	?	?	?

Hardware failures

Hardware failures

• Storage \rightarrow Hosts \rightarrow Datacenter/AZ \rightarrow Region

Redundancy is the key

- EBS replication in AZ
- Multi-AZ

Multi-AZ deployment

- Multi-AZ/Failover
 - Failover within 60-120 sec
 - 2-3 failover per year across our fleet
- Circular dependency
- Other options?

Read Replica Promotion

- In-sync, idle, same config
 - chained RRs
- When and how to promote?
 - Manual operation
 - Risk: async replication → data loss

20

Cross-Region Replica Recovery

- Managed by a different region
- Not a (likely) promotion target
 - High latency

DR Option Summary

Recovery option	Hardware Failure	AZ Outage	Region Outage	Physical Corruption	Logical Corruption
Multi-AZ Failover	$\overline{\checkmark}$	V	×	×	X
Replica Promotion	V	V	X	?	X
XR Replica	\checkmark	V	V	?	X
DML Change Log Recovery	?	?	?	?	?
Delayed Replica	?	?	?	?	?
PITR	?	?	?	?	?
XR PITR	?	?	?	?	?
Logical Dump	?	?	?	?	?

Logical and Physical corruption

Logical corruption

• What is logical corruption?

• Not a problem for DB engine

- Source
- Impact
- How to recover?

truncate users; drop table orders;

Point In Time Recovery

- How to get data for recovery?
- Backups
- Point In Time Restore
 - Multiple-attempts, but can be slow
- Cross-Region

Logical corruption: DML Change Log

- Questions: When? What? Previous values?
- Implementation
 - Triggers → Audit table
- Forensic queries
- Small logical corruption recovery

```
REATE TABLE change_history (
  table_name text NOT NULL,
   operation varchar(10) NOT NULL,
   changed_at timestamp with time zone NOT NULL,
   db_user text NOT NULL,
   previous_data jsonb
CREATE OR REPLACE FUNCTION log_table_changes()
RETURNS trigger AS $$
  INSERT INTO change_history (table_name, operation, changed_at, db_user, previous_data) VALUES (
       table_name TG_TABLE_NAME::text,
       operation TG_OP,
       changed_at current_timestamp,
          WHEN TG_OP = 'INSERT' THEN NULL
          ELSE to_jsonb(OLD)
  RETURN NEW;
$$ LANGUAGE plpgsql;
```

26

aws

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Delayed Replica Recovery

- Replica is always behind primary by X seconds
 - How to use for recovery?
- New RDS Postgres feature
- Move to anywhere between (now delay, now]
 - Irreversible, can only move back to the future!
- Quicker than PiTR
- Watch out for storage

27

Logical corruption: Preventive measures

Database

FKs, Constraints and Triggers

Application

Secure queries, AuthN/AuthZ **Operations**

Monitoring, rate limiting and circuit breakers

Physical corruption

- What is physical corruption?
 - A problem for DB engine
- How to detect?
 - Checksums, errors, query crashes
- How to recover?

Logical Dump Recovery

- Pg_dump every few hours
 - from dedicated replica
 - pause WAL \rightarrow dump \rightarrow resume \rightarrow restore test
- No dependency on RDS
- But hours of data loss

30

DR Options Summary

Recovery option	Hardware Failure	AZ Outage	Region Outage	Physical Corruption	Logical Corruption
Multi-AZ Failover	$\overline{\checkmark}$	V	X	×	×
Replica Promotion	V	V	X	?	X
XR Replica	V	V	V	?	×
DML Change Log Recovery	X	X	X	×	V
Delayed Replica	X	X	×		V
PITR	V	V	X	V	V
XR PITR	\checkmark	V	V	\checkmark	V
Logical Dump	X	×	V	V	V

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Operational readiness

Operational readiness

- Standard: backups, security and monitoring
- Disaster recovery automated tests
- Operator training

Operational readiness: Trainings scenarios

Scenario	Simulation	Diagnose	Trainee's task
Failover	Force Multi-AZ failover	App logs and metrics	Confirm failover & recovery
Overload	Drop index + API spam	App vs db metrics	Throttle API traffic
Locking	Lock critical table	App metrics and pg_stat_activity	Terminate blocking query
Logical corruption	Delete or update critical data	App logs and metrics and db data	Choose recovery method and restore data

Thank you!

Andrei Dukhounik dukhouni@amazon.com

Alisdair Owens alow@amazon.com

