Improved Freezing
In Vacuum

Melanie Plageman
Microsoft

Agenda

O O &

WHAT IS FREEZING AND WHEN DO WE FREEZE WHY ISIT HARD TO DO WHATDID WEDOIN 18
WHY DO WE NEED IT NOW BETTER

£8) £8)

Multi-Version Concurrency Control

Xxmin Xmax status value

L\
20 X R lorem Not visible, Live (running) D@
292 100 C ipsum Visible, Dead xmin: 200
50 700 C aies Visible, Live; Not visible, Dead xmax: 600
100 X C sit Visible, Live

. not
«— Vvisible 1 progress visible —

xmin xip[] xmax

Wraparound

A Current XID

2 billion

2 billion

Wraparound

Wraparound

Freezing

xXxmin xXxmax status wvalue

20 X R lorem Not visible, Live (running)

Visible, Dead

e Ty T T &
R
s o I s e I e

Visible, Live; Not visible, Dead

O
e
it

S
e A
BEER & S

R R e R R S S e R e e
ebeibeibeibeib it b R R R R R R

o
o
i

[

Visible, Live

300 X C amet Check XIP

Wraparound =-ss) Read-only database

How do we know if our table is in danger?

Query XID: 1,900,000,000

| 00000000
xmin xmax status value 00000000
T . . 0ODO0000
00000000

0000000
50 700 C dolor DDDDDDDD

U U
000
O
000000

22 100 C ipsum

100 X C sit

O

300 X C amet

relfrozenxid == relfrozenxid ==

relfrozenxid == 10 1,000,000,000 1,200,000,000

pg class.relfrozenxid

Query XID: 1,900,000,000

| 00000000
xmin xmax status value 00000000
T . . 0ODO0000
00000000

0000000
50 700 C dolor DDDDDDDD

U U
000
O
000000

22 100 C ipsum

100 X C sit

O

300 X C amet

relfrozenxid == relfrozenxid ==

relfrozenxid == 10 1,000,000,000 1,200,000,000

“l Who should freeze and when?

Dirties
pages

Vacuum well-positioned to freeze

Dirties
pages

Encounters

Emits WAL
tuples

“| Freezing inconsistent with vacuum’s
mandate

Triggered by
Insert and
modification
thresholds

J

Reads modified
pages

Skips all-visible
pages

Visibility map

Forcing vacuum of all-visible pages

relfrozenxid<autovacuum freeze max age

triggers anti-wraparound vacuum

- usually aggressive (controlled by vacuum_freeze_table_age)
- scans all all-visible pages

Freezing Timeline

2 billion

1.6 billion

00000000
00000000
00000000
00000000

00000000
00000000

00000000
00000000
00000000
00000000

200 million

O00a0
O00a0
O00a0
O00a0

0000
O00a0

O00a0
O00a0
O00a0
0000

50 million

000
000
000
000

000
000

vacuum freeze min age

failsafe

autovacuum freeze max age

“l Aggressive Vacuum Overhead

/0 impact

disrupts Can last through
foreground failsafe
workloads

/0O Amplification Waliting to Freeze

Evictinserted
data

Write

Vacuum
strategy evict

Write

SELECT * query

Read

Aggressive
vacuum

Read

Set
hints

Freeze tuples
and update VM

Evict hinted Normal

data vacuum
Write Read
Vacuum

strategy evict

Write

Set page vis
hintand VM

PD ALL VISIBLE

When should we freeze?

ldeal Time To Freeze

Evict hinted Normal Set page vis
data vacuum hintand VM

Evictinserted
data

SELECT * query Set

hints

PD ALL VISIBLE

Write Read C Write Read

Freeze Freeze Freeze
Vacuum Aggressive Freeze tuples Vacuum
strategy evict vacuum and update VM strategy evict

- 81

Write Read Write

What can be eliminated

V. AgV

WRWRWXR W

freeze

Ce

Preemptive Freeze Algorithm
Possibilities

Freeze all visible tuples on every vacuum?
(Ignore vacuum_freeze_min_age)

V
——

WRWRW

freeze

ge

V
——
WRWRW
freeze

Ce

Transactionally
dirtying buffer

V
——

freeze

Ce

Transactionally
dirtying buffer

V
——

freeze

ge

Transactionally
dirtying buffer

V
——

freeze

o

Diverse access patterns

Insert-only table

Hotly updated table

What about using

Insert-only table

updates/deletes

pg stat all tables.n tup upd, n tup del

Hotly updated table

What-aboutusing

tpdates/detetes

pg stat all tables.n tup upd, n tup del

Insert-only table

Hotly updated table

What about freezing every page once

Hotly ‘ | —— {—A—\ {_A_\
updated Transactionally Transactionally Transactionally
table W R W R W dirtying buffer dirtying buffer dirtying buffer
freeze
—
Insert-
only WRWRW
table freeze

25

V V
ETL —— ——
workload W R W W R W
Bulk Freeze Update
load all data

data *

| , Extra WAL and potentially
FPIs for every page

Need a model for table access
pattern and data age

Quiescence theory

Evicted

Will the page be modified again?

e \ \ D
\ J \ J \ J
e \ \ D
\ J \ J \ J
e \ \ D
\ J \ J \ J
e \ \ D
\ J \ J \ J

Evicted

How often can you tolerate useless freezing?

A = Autovacuu

Is the page young enough to stay
unmodified for target freeze
duration?

@000
@00
o0

How likely is our specific page to stay
unmodified for target freeze duration?

‘ Current unmodified

O O ' duration

Ta rglt freeze duration

O
OO

@
000000
@)

000
@00

—

[2323588

Probability
—p

LSN

0 Unmodified Durations of

Vacuumed Pages 1 hour 1'hour, 40
mintitec

=
o
1

o
oo
1

VM page freezes

le8

Results: Consistent freezing

33:20 66:40 100:00 133:20 166:40

https://github.com/melanieplageman/postgres/tree/adaptive_freeze_for_presentation

Results: All-visible Debt Low and Stable

le7

e \ —— patch
Y
—— master

leb6

https://github.com/melanieplageman/postgres/tree/adaptive_freeze_for_presentation

Many short autovacuums

—— patch
1409 —— master

120 Aggressive

» 100 - vacuum

3
> 80 A
s

> 60

40

204

Lower Total Time Spent Vacuuming

leb

| —— patch
—— master

Aggressive
vacuum

Insert-only workloads, data not modified

() () () () () () () () () 4) (
\ J/ \ J/ \ J/ \ J/ \ J/ \ J/ \ J/ \ J/ \ J/ \ J/ \
() () () () () () () () () () (
\\ / \. J/ \. J/ \. J/ . J/ \. J/ \. J/ \. J/ \. J/ \ J/ \
() () () () () () () () () 4) (
\ J/ \ J/ \ J/ \ J/ \ J/ \ J/ \ J/ \ J/ \ J/ \ J/ \
() () () () () () () () () () (

Missing data for pages not modified again

Frequency

0 Unmodified Durations of 100000
Vacuumed Pages

Need to add LSNSs of all-visible pages

_ 2323A588/

Frequency

LSN

0 LSNs of all-visible pages 100000

Building a distribution was complicated

High code complexity

I

e Low reusability

Major existing infrastructure issues

e Didn’t work with failover or crash

| essons Learned

L

* Sometimes attempts to simplify fail
* Define the problem better sooner

New Direction

What Went into Postgres 18

Long time between vacuuming and aggressive
vacuuming B1

Vv AgV
WRWRW R W

freeze B1

g

Other inserts triggered normal vacuums of
new pages

V V V \V;
—— o —— —
WRWRW RW RW RW

What if we scan and freeze B1 sooner?

V V V \V;
—— o —— —
WRWRW RW RW RW

freeze B1

&

Switch framing to all-visible pages scanning

"Il Adaptively eager scan all-visible pages

* All-visible pages more likely to need freezing
* Stop freezing if it isn’t working
* Only requires tracking information in one vacuum

Amortize the aggressive vacuum

V V V \V;
—— —— —— —
WRWRW R RW

freeze % all-visible freeze % all-visible freeze % all-visible

Eo Ee

Adaptively eager scan all-visible pages

T

 Cap eager scanning at a percentage of all-visible pages
* Suspend eager scanning if not successfully freezing pages

Il GUC and table storage option

* Eagerly scan and freeze up to 20% of the table
* No more eager scanning for remainder of vacuum

* vacuum max eager freeze failure rate
* Eagerly scan and fail to freeze 3% of 4096 block size region (32 MB)
* Suspend eager scanning until next region

Future Directions

| |
Evictinserted SELECT * queries Set | Evict hinted Normal
data and sets hints hints I data vacuum
Write Read I Write Read
Freeze on flush in checkpointer or bgwriter Freeze on-
access
Vacuum Aggressive Freeze tuples Vacuum
strategy evict vacuum and update VM strategy evict

Write Read Write

Set page vis
hintand VM

PD ALL VISIBLE

Conclusion

v ® » ©

ADAPTIVE ALGORITHMS BUT ARE VERY HARD BUT WE SHOULD THINK THANKS TO
ARE POSSIBLE IN MORE ABOUT THEM ANDRES FREUND AND
POSTGRES

ROBERT HAAS

= Microsoft

Got 3 minutes?
We’d love your input

oh some of our
Postgres work

Get your FREE socks @ Microsoft booth

	Slide 1: Improved Freezing In Vacuum
	Slide 2: Agenda
	Slide 3: Multi-Version Concurrency Control
	Slide 4: Wraparound
	Slide 5: Wraparound
	Slide 6: Wraparound
	Slide 7: Freezing
	Slide 8
	Slide 9: How do we know if our table is in danger?
	Slide 10: pg_class.relfrozenxid
	Slide 11: Who should freeze and when?
	Slide 12: Vacuum well-positioned to freeze
	Slide 13: Freezing inconsistent with vacuum’s mandate
	Slide 14: Visibility map
	Slide 15: Forcing vacuum of all-visible pages
	Slide 16: Freezing Timeline
	Slide 17: Aggressive Vacuum Overhead
	Slide 18: I/O Amplification Waiting to Freeze
	Slide 19: When should we freeze?
	Slide 20: Ideal Time To Freeze
	Slide 21: What can be eliminated
	Slide 22: Preemptive Freeze Algorithm Possibilities
	Slide 23: Freeze all visible tuples on every vacuum? (Ignore vacuum_freeze_min_age)
	Slide 24: Freeze all visible tuples on every vacuum?
	Slide 25: Diverse access patterns
	Slide 26: What about using # updates/deletes
	Slide 27: What about using # updates/deletes
	Slide 28: What about freezing every page once
	Slide 29: What about freezing every page once
	Slide 30: Need a model for table access pattern and data age
	Slide 31: Quiescence theory
	Slide 32: Will the page be modified again?
	Slide 33: How often can you tolerate useless freezing?
	Slide 34: Is the page young enough to stay unmodified for target freeze duration?
	Slide 35: How likely is our specific page to stay unmodified for target freeze duration?
	Slide 36: Results: Consistent freezing
	Slide 37: Results: All-visible Debt Low and Stable
	Slide 38: Many short autovacuums
	Slide 39: Lower Total Time Spent Vacuuming
	Slide 40: Insert-only workloads, data not modified
	Slide 41: Missing data for pages not modified again
	Slide 42: Need to add LSNs of all-visible pages
	Slide 43: Building a distribution was complicated
	Slide 44: High code complexity
	Slide 45: Lessons Learned
	Slide 46: New Direction
	Slide 47: Long time between vacuuming and aggressive vacuuming B1
	Slide 48: Other inserts triggered normal vacuums of new pages
	Slide 49: What if we scan and freeze B1 sooner?
	Slide 50: Switch framing to all-visible pages scanning
	Slide 51: Adaptively eager scan all-visible pages
	Slide 52: Amortize the aggressive vacuum
	Slide 53: Adaptively eager scan all-visible pages
	Slide 54: GUC and table storage option
	Slide 55: Future Directions
	Slide 56: Conclusion
	Slide 57

