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Multi-Version Concurrency Control
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Freezing
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Wraparound =-ss) Read-only database



How do we know if our table is in danger?

Query XID: 1,900,000,000
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pg class.relfrozenxid
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“l Who should freeze and when?
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Vacuum well-positioned to freeze
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Visibility map




Forcing vacuum of all-visible pages

relfrozenxid<autovacuum freeze max age

triggers anti-wraparound vacuum

- usually aggressive (controlled by vacuum_freeze_table_age)
- scans all all-visible pages



Freezing Timeline
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“l Aggressive Vacuum Overhead
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When should we freeze?
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What can be eliminated

V.  AgV

WRWRWXR W

freeze

Ce




Preemptive Freeze Algorithm
Possibilities



Freeze all visible tuples on every vacuum?
(Ignore vacuum_freeze_min_age)
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Diverse access patterns

Insert-only table

Hotly updated table




What about using

Insert-only table

updates/deletes

pg stat all tables.n tup upd, n tup del

Hotly updated table




What-aboutusing
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What about freezing every page once
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Need a model for table access
pattern and data age



Quiescence theory
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Will the page be modified again?
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How often can you tolerate useless freezing?
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Is the page young enough to stay
unmodified for target freeze
duration?
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How likely is our specific page to stay
unmodified for target freeze duration?
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VM page freezes
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Results: Consistent freezing
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https://github.com/melanieplageman/postgres/tree/adaptive_freeze_for_presentation



Results: All-visible Debt Low and Stable
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https://github.com/melanieplageman/postgres/tree/adaptive_freeze_for_presentation



Many short autovacuums
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Lower Total Time Spent Vacuuming

leb

| —— patch
—— master

Aggressive
vacuum




Insert-only workloads, data not modified
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Missing data for pages not modified again
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Need to add LSNSs of all-visible pages
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Building a distribution was complicated




High code complexity

I

e Low reusability

Major existing infrastructure issues

e Didn’t work with failover or crash




| essons Learned

L

* Sometimes attempts to simplify fail
* Define the problem better sooner



New Direction

What Went into Postgres 18



Long time between vacuuming and aggressive
vacuuming B1
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Other inserts triggered normal vacuums of
new pages
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What if we scan and freeze B1 sooner?
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Switch framing to all-visible pages scanning




"Il Adaptively eager scan all-visible pages

* All-visible pages more likely to need freezing
* Stop freezing if it isn’t working
* Only requires tracking information in one vacuum



Amortize the aggressive vacuum
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Adaptively eager scan all-visible pages

T

 Cap eager scanning at a percentage of all-visible pages
* Suspend eager scanning if not successfully freezing pages



Il GUC and table storage option

* Eagerly scan and freeze up to 20% of the table
* No more eager scanning for remainder of vacuum

* vacuum max eager freeze failure rate
* Eagerly scan and fail to freeze 3% of 4096 block size region (32 MB)
* Suspend eager scanning until next region



Future Directions
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Conclusion
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ADAPTIVE ALGORITHMS BUT ARE VERY HARD BUT WE SHOULD THINK THANKS TO
ARE POSSIBLE IN MORE ABOUT THEM ANDRES FREUND AND
POSTGRES

ROBERT HAAS



= Microsoft

Got 3 minutes?
We’d love your input

oh some of our
Postgres work

Get your FREE socks @ Microsoft booth
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