
Learnings from Extension 
Development in Rust & PGRX
Arda Aytekin & Aykut Bozkurt

Apr 26, 2024



Agenda

1. Background & Context

2. Why Rust & PGRX

3. Project Structuring and Cargo Workspaces

4. Optional Dependencies and Features

5. Foreign Function Interface

6. IO- and CPU-bound Tasks, gRPC Communication

7. Compliance and Lifecycle Management

8. Recap



Background & Context

• AI extensions team at Azure Database for PostgreSQL
• Two AI-related extensions

• azure_ai in Nov 2023 (Microsoft Ignite)
• <another_one> in May 2024 (Microsoft Build)

• Six months of Rust & PGRX efforts
• Complete remake of a C-based extension
• Our choices and learnings (not a definitive set of best practices)

• Topics touched
• Optional dependencies and features (e.g., telemetry)
• Testing and benchmarking
• Foreign Function Interface (mostly C)
• API calls and RPC
• Compliance



Why Rust & PGRX

Why Rust
• Safety and performance

• Ownership and lifetimes (memory safety)
• (Zero-cost) High-level abstractions (perf.)

• Toolchain (cargo)
• Unit tests, doc tests, benchmarks
• Extensible via custom commands
• Easy dependency management

• Good resources (even the compiler)
• Even though the learning curve is steep

Why PGRX
• Fully-managed development environment

• create, unit-test, run, install, package
• Target multiple PostgreSQL versions
• Automatic schema generation
• First-class UDF support
• Easy custom types
• Server programming interface
• Executor/planner/(sub)transaction hooks
• Logging through PostgreSQL



Project Structuring & Cargo Workspaces

• Files -> Modules -> Crates -> Packages
• Opinionated (but tidy/clean) project structuring

• Cargo workspaces
• Help manage multiple related packages developed in tandem
• Same Cargo.lock file and output directory
• No additional copies of the same dependency downloaded
• Every crate in every package uses the same version of the same 
dependency

• Help save space and ensure compatibility



Optional Dependencies and Features

• Features provide a mechanism for optional dependencies 
and conditional compilation

• Optional dependencies are not compiled by default

• cargo-pgrx
• Different features for different supported versions (11…16)
• Enables the corresponding feature of the dependency
• Supports building for and testing against different PostgreSQL 
versions from the same codebase



Foreign Function Interface

From C to Rust
• bindgen

• Automatically generates Rust FFI bindings to C

• cc
• Library to compile C/C++/assembly/CUDA files 

into a static archive for Cargo to link into the 
crate

• cmake
• Build dependency for running cmake to build 

native libraries

• libc
• Necessary definitions for easy C interoperability

From Rust to C
• cbindgen

• Creates C/C++ headers for Rust libraries that 
expose a public C API



IO-/CPU-Bound Tasks & gRPC

• Tokio
• Asynchronous runtime for the Rust language
• Single-threaded and multi-threaded runtimes
• Asynchronous version of the standard library
• IO-bound operations

• Rayon
• Data-parallelism library
• Parallel iterators
• Expensive CPU-bound operations

• Tonic & Prost!
• Native gRPC client & server implementation with async support
• Native Protocol Buffers implementation in Rust (Prost!)



Compliance and Lifecycle Management

• cargo pgrx test & cargo pgrx package

• cargo deny
• Advisories. Detect security vulnerabilities and unmaintained crates
• Bans. Denying specific crates and detecting duplicate versions
• Licenses. Verify that each crate has license terms you find acceptable
• Sources. Allow only known/trusted sources and/or vendored file 
dependencies

• cargo udeps
• Helps find unused dependencies in Corgo.toml



Recap
• Rust

• Safety and performance
• Extensible package manager (cargo)
• Tight control via workspaces & features
• Interoperability with C
• Compliance & lifecycle management

• PGRX
• Fully-managed development environment
• Supports multiple PostgreSQL versions
• First-class UDF support & custom types
• Server programming interface
• Logging through PostgreSQL



References

Rust
• The Book
• The Cargo Book
• The Rustonomicon

Frameworks & Tools
• PGRX
• Tokio (IO-bound), Rayon (CPU-bound), and Tonic & Prost! (gRPC)
• bindgen, cbindgen, cc, cmake, and libc
• cargo-deny and cargo-udeps
• opentelemetry, opentelemetry_sdk, and opentelemetry-otlp



© Copyright Microsoft Corporation. All rights reserved. 



Save the date
June 11-13, 2024

A free & virtual developer event

Save the Date  aka.ms/posette-cal

(formerly Citus Con)



Got 3 minutes? 
We’d love your input 

Get your FREE socks 
@ Microsoft booth

on some of our Postgres work


	Learnings from Extension Development in Rust & PGRX
	Agenda
	Background & Context
	Why Rust & PGRX
	Project Structuring & Cargo Workspaces
	Optional Dependencies and Features
	Foreign Function Interface
	IO-/CPU-Bound Tasks & gRPC
	Compliance and Lifecycle Management
	Recap
	References
	Slide Number 12
	Slide Number 13
	Slide Number 14

