
Hett ie Dombrovskaya

Database Architect

PG Day Chicago 2024

Implementing Temporal Features in
PostgreSQL:
SQL Standard and Beyond

2

Who am I

Hettie Dombrovskaya

Database Architect at DRW
Local Organizer of Chicago PostgreSQL User Group

PG Day Chicago Operations Committee

3

What is this
talk about?

- 10+ years of bitemporal model development

- (Almost) no traction in Postgres community

- First elements of temporality coming in PG 17

- Standard – Postgres – Bitemporal model

I want it to be done right!

4

What will be covered

• Temporal DB Basics

• Temporal features in the SQL standard

• Postgres support for temporal data

• Bitemporal model

• Features comparison

• What is missing

• How to do it right

6

Temporal DB Basics

7

Why Time
Travel?

ü Point-in-time (snapshot) queries:
How my report looked on the last
day of previous month?

ü Change Log: When and how the
state of my request was changed?

ü Fully Temporal:
q When these objects co-exist?
q Before/after/meets etc.
q Temporal joins, aggregations

etc.

8

• Any theoretical paper starts with it

Snapshots

Potential
solutions

All are equivalent

but query performance may differ

• Often produced by applications with a hope
that they will be used for analysis in the
future

Event Logs

• Used by everyone who actually implements
temporal features in a database

Periods

9

Transactional (system)

Time
Dimensions

This is something beyond common
sense in the real life, however, we
need them

Valid = Effective

Much more are defined but not widely known

Asserted- transactional

10

Temporal Features in the SQL Standard

11

Types and
Predicates

The Standard:

üDoes not introduce a period type, instead, a pair of

timestamp columns can represent the period

üDefines period as closed-open

ü Supports period predicates: OVERLAPS, MEETS, etc.

(Similar but not equivalent to Allen operators)

ü Supports System time (Transaction Time) and/or

Application Time (Valid Time)

12

System Time

• System-versioned tables, the name

SYSTEM_TIME is fixed.

• Before and now, never in the future

• Can never be changed

• Does NOT require separate table for historical

data, although some implementaIons do that

• Default – CURRENT record

13

Application
(Valid) Time

• Maintained by the user

• Column names can be arbitrary

• No semantics are specified

• Currently at most one additional time

dimension can be specified

14

Primary Keys

The Standard does not provide
clean resolution for the PK

Triple (ENo, EStart, EEnd) does not work
Instead, it suggests “no overlap”

 ALTER TABLE Emp
 ADD PRIMARY KEY (ENo,
 EPeriod WITHOUT OVERLAPS)

15

Foreign Keys

Referential integrity constraints
should be time-aware
The example below won’t work:

 ALTER TABLE Emp

 ADD FOREIGN KEY

 (Edept, PERIOD EPeriod)

REFERENCES Dept

 (DNo, PERIOD DPeriod)

16

Queries and DML

Syntax extensions for INSERT,
UPDATE, DELETE to specify
period(s)

Syntax extensions for SELECT (add
FOR to SELECT)

17

PostgreSQL Support for Temporal Data

18

What is Available

ü Period data types are provided

although are not required by the

Standard

ü Rich set of operators and functions

for timestamps, intervals, and

periods

ü Predicates are implemented as

required by the Standard (including

closed-open semantics)

Additionally:

ü GIST indexes

ü GIST with exclusion constraints

(solve temporal PK problem)

ü PG 17: temporal PK/UQ

19

What is Missing

Language extensions:

ü CREATE temporal table

ü SELECT within time period (except

for adding explicit condition)

ü Modified INSERT/UPDATE/DELETE

syntax

20

Bitemporal Implementation

21

Overview of
Bitemporal
Model

ü Supports asserted and effective time
dimensions

ü Transactional dimension can be derived
from row_created_at timestamp, but is not
explicitly supported

ü Heavily relies on PostgreSQL features

ü Does not provide any syntax extensions

ü Data manipulation is implemented with
user-defined functions

ü Provides detailed refinement of data
manipulation semantics

ü Supports temporal integrity constraints

22

Storage and
Indexes

ü Bitemporal primary keys (business keys) are
defined as keys with NO OVERLAP u^lizing
GIST with exclusion constraints.

ü GIST indexes make bitemporal search
efficient

23

Queries

ü Time-related conditions must be explicitly
specified (acceptable in the Standard)

ü Built-in predicates (INCLUDES, OVERLAPS,
etc.) are helpful

ü Fully temporal queries are still tricky (we
don’t know how to write them!)

24

Data Manipulation

The refinements of manipulation
semantics

ü INSERT

ü UPDATE

ü CORRECTION

ü INACTIVATE

ü DELETE

25

Bitemporal Insert

252024

Effective Interval Assertive Interval Customer No. Name Type

1 [2022-06-01, oo) [2022-05-01 , oo) C100 John Doe Silver

A
s
s
e
r
t
e
d

1

Effective

now = 2022-05-01
select ll_bitemporal_insert(

'customers’,
, $$’customer_no’, name', ’type' $$,
, $$'C100','John Doe', 'Silver' $$,
 timeperiod(‘2022-06-01','infinity'),
timeperiod(‘2022-05-01','infinity’))

26

Bitemporal Update

262024

Effective Interval Assertive Interval Customer No. Name Type

1 [2022-06-01, oo) [2022-05-01,2022-09-15) C100 John Doe Silver

2 [2022-06-01,2022-09-15) [2022-09-15, oo) C100 John Doe Silver

3 [2022-09-15, oo) [2022-09-15, oo) C100 John Doe Gold

A
s
s
e
r
t
e
d

1

3

1

2

Effective

now = 2022-09-15

select ll_bitemporal_update($$customers$$,
$$customer_no$$, $$100$$,
$$type$$, $$Gold$$,
timeperiod(‘2022-09-15’, ‘infinity’),
timeperiod(‘2022-09-15’, ‘infinity’))

27

Bitemporal Correction

272024

#Effective Interval Assertive Interval Customer No. Name Type

1[2022-06-01, oo) [2022-05-01,2022-09-15) C100 John Doe Silver

2[2022-06-01,2022-09-15) [2022-09-15, oo) C100 John Doe Silver

3[2022-09-15, oo) [2022-09-15, 2022-09-22) C100 John Doe Gold

4[2022-09-15, oo) [2022-09-22, oo) C100 John Doe Platinum

A
s
s
e
r
t
e
d

3

1

2 4

3

1

2

Effective

now = 2022-09-22

select ll_bitemporal_correction($$customers$$,
$$type $$,
$$ Platinum$$,
$$ customer_no $$,
$$ C100$$,
timeperiod(‘2022-09-15','infinity'),
now())

28

Bitemporal Inactivate

282024

Effective Interval Assertive Interval Customer No. Name Type

1 [2022-06-01, oo) [2022-05-01,2022-09-15) C100 John Doe Silver

2 [2022-06-01,2022-09-15) [2022-09-15, oo) C100 John Doe Silver

3 [2022-09-15, oo) [2022-09-15, 2022-09-22) C100 John Doe Gold

4 [2022-09-15, oo) [2022-09-22, 2022-11-05) C100 John Doe Platinum

5 [2022-09-15,2022-12-31) [2022-11-05, oo) C100 John Doe Platinum

A
s
s
e
r
t
e
d

4

3

1

2
5

4
3

1

2

Effective

now = 2022-11-05

select ll_bitemporal_inactivate(
$$customers$$,
$$customer_no$$,
$$C100$$,
timeperiod(‘2022-12-31','infinity'),
timeperiod(‘2022-11-05','infinity'),

Bitemporal Delete
Effective Interval Assertive Interval Customer No. Name Type

1 [2022-06-01, oo) [2022-05-01,2022-09-15) C100 John Doe Silver

2 [2022-06-01,2022-09-15) [2022-09-15, oo) C100 John Doe Silver

3 [2022-09-15, oo) [2022-09-15, 2022-09-22) C100 John Doe Gold

4 [2022-09-15, oo) [2022-09-22, 2022-11-05) C100 John Doe Platinum

5 [2022-09-15,2022-12-31) [2022-11-05, 2022-11-17) C100 John Doe Platinum

A
s
s
e
r
t
e
d

4

5

3

1

2
5

4
3

1

2

Effective

now = 2022-11-17

select ll_bitemporal_delete(
'customers',
$$ customer_no $$,
$$ 'C100' $$,
timeperiod(‘2022-11-17','infinity'))

292024

30

Bitemoral vs. Standard Comparison

Feature Standard Bitemporal

Period type Not required ✔

Open/close semantics and
predicates

✔ ✔

SYSTEM_TIME ✔ Implicit

APPLICATION_TIME ✔ ✔

ASSERTED_TIME Semantics not specified ✔

Modified SQL syntax ✔ No

(bi) temporal PK ✔ ✔

Referential integrity constraints ✔ ✔

31

What is Sill Missing?

32

What is Missing
in the Standard

ü Support for more than one application time

dimension, which means no support for:

§ Future assertion

§ UPDATE vs. CORRECTION semantics

ü Comprehensive temporal JOIN support

• Calculating result dimensions properly

• OUTER temporal joins

ü Period AGGREGATE support

33

What is Missing
in PostgreSQL

Of course, bitemporal!

Actually, there is no SQL-supported

temporality

PG 17 makes only first steps towards that

goal

34

What is Missing
in Bitemporal

ü Syntax extensions

üDesign methodologies (also missing in the Standard)

ü Explicit support for transac^onal ^me dimension,

although transac^onal dimension is not really needed

(the Standard iden^fies SYSTEM_END as the ^me

when a record stops being CURRENT)

35

Conclusion

36

Past, Present, and Future
of Temporal Databases

• The SQL Standard provides very reasonable conservative support of

Temporal tables

• PostgreSQL contains everything that is needed for efficient

implementation but not an implementation

• Bitemporal is not too far from the Standard

• Find more: https://github.com/hettie-d/pg_bitemporal

37

GLOBAL
TRADING

37

Q&A
Hettie Dombrovskaya
Database Architect DRW

hdombrovska@drwholdings.com
www.drw.com

http://www.drw.com/

