
Hettie Dombrovskaya

Database Archi tect

PGDay Chicago 2025

Securing Your PostgreSQL Data:
One Size Does Not Fit All

2

Who Am I

Hettie Dombrovskaya
• Database Architect at DRW
• Prairie Postgres NFP President
• Midwest PostgreSQL User Group
• Illinois Prairie PostgreSQL User Group
• ACM Chicago Chapter Communications Chair

3

What will be covered

S
e
c
u
r
i
n
g

Y
o
u
r

P
o
s
t
g
r
e
S
Q
L

D
a
t
a • Identifying common security challenges

• What can we do about them?

• Security framework overview

• Models description

• How we built it

• Ongoing issues and future prospects

4

Why this
talk?

- We live in an age of data breaches

- Securing data is a high priority

- PostgreSQL has everything

- Still…

USER: POSTGRES

SCHEMA: PUBLIC

WHY?!

5

Challenge #1: PostgreSQL does
not force you to create roles
and schemas in order to start.

And all examples in documentation create objects in
PUBLIC schema!

6

As a result…

▪ Applications are developed using postgres user

▪ When they move to production, developer either forget to change the

user or run into permissions problems they do not have time do not

know how to fix

▪ When an application uses connection pools different application users

connect as the same database user

7

Challenge #2: The wonders of
inheritance

- Starting with PG 7.3, there is no distinction between users and roles

(user=role+login)

create role role1;

create role role2 login password ‘pwd’;

create user user1 password ‘pwd’;

- All grants below will work:

grant role1 to role2;

grant role2 TO user1;

grant user1 to role2;

… and if later you will execute

create role role3;

grant role3 to role1 ---will be inherited

8

Challenge #3: You think you
created a role for a database?
Think again!

- Roles are created on the instance level, not the database level

- If there are several databases on one instance, all users will have access to

all databases, because…

 By default, all user have CONNECT privilege to all databases on the

instance

- Until PG 15, all users could create objects in PUBLIC schema. That

includes public schema in all databases on the same instance.

 - If a customer requested a superuser privilege, this superuser will be able

to do everything on all databases on that instance.

9

Trying to do things the right way!

Grouping (objects and users):

 - Using schemas for access control: all objects in each schema have the same set of

privileges

- Granting privileges to groups (nologin roles) only. And granting roles to users

create schema orders owner orders_owner;

grant orders_owner to orders_admin;

create role orders_read_write;

create role orders_read_only;

grant select on all tables in schema orders to orders_read_only;

grant select, insert, update, delete on all tables in schema

orders to orders_read_write;

What is not going to work?

10

Challenge #4: Default privileges

- Yes, you also need to grant usage!

grant usage on schema orders to orders read_write, orders_read_only

- What else?

alter default privileges in schema orders grant select on tables to

orders_read_only;

alter default privileges in schema orders grant select, insert, update,

delete on tables to orders_read_write;

Now:

create table orders.customer (

customer_id int primary key,

customer_name text);

- Why were default permissions not applied?!

alter default privileges in schema orders for role orders_owner grant

select, insert, update, delete on tables to orders_read_write;

11

Challenge #5: The wonders of
ownership!

- When you run:

create schema orders owner orders_owner;

It created a lot of privileges for orders_owner user:

grant all on schema orders to orders_owner

- But what happens when you execute

alter schema orders owner new_orders_owner;

Does anything change with permissions?

NO!

12

Challenges #6, #7, #8… Lots of
weird things!

grant select orders.sales_points to role_ro;

grant insert, update, delete on orders.sales_points to role_app;

grant role_ro to your_user;

grant role_app to your_user;

revoke delete on orders.sales_points from your_user;

Will this work?

- It won’t, and moreover, errors won’t be reported:

REVOKE of permissions which are not granted
GRANT permissions which are already granted except for roles

- You can’t drop user that has any privileges

- You can’t drop role cascade

- And there is no easy way to see what permissions a given user has!

13

Now imagine you have not five, not

ten, but 300+ databases, and new

requests are coming each day!

14

A separate instance for each

new project – possible, but

expensive.

15

Security
Models

Overview

Principles and implementation

16

• A user is given the minimum levels of
access needed to perform their job
functions.

Principle of least privilege

Basic

principles

The only security model to support multi-

tenancy within one PostgreSQL database

• Non-superuser users do not have a
way to bypass security settings

Durability

• One package supports four security
models with different permissions
hierarchy.

Flexibility

17

Key features
Event trigger

• Schemas and roles creation/deletion are performed using

security definer functions

Security-definer functions

• Schema owner TRUE/FALSE

• Account owner TRUE/FALSE

Security levels matrix

• Forces all objects in each schema to be owned by the

schema owner role and assigns default privileges

• Security modal is set up on the database level

Database level security

18

Four Models

Single owner

Schema owner

Account owner

Account and schema owner

19

Single owner

20

Schema owner

21

Account owner

22

Account and schema owner

23

Enabling security model

• Deploy the package

• If the package was previously deployed, the previous security settings will be used:

Changing existing settings is manual

• If that’s the first deployment run

select * from grant_create_schema_users(Boolean, Boolean)

This will

▪ record security setting in the database

▪ enable event trigger

▪ grant execute on all security-definer functions to the database owner role

24

Functions

25

create_schema_roles

Input parameters:

• schema_name

• app_user_name (opt)

• app_user_password (opt)

• ro_user_name (opt)

• ro_user_password (opt)

• ddl_user_name (opt)

• ddl_user_password (opt)

• account_owner (opt, default = current user)

Actions:

• creates schema (ownership is driven by security

settings)

• creates read_write role

• creates read_only role

• creates owner role (if applicable)

• creates/assigns app, ro and owner users

26

drop_schema_roles

Input parameters:

• schema_name

Actions:

• revokes read_only role from all users

• revokes read_write from all users

• revokes owner role (if applicable)

• drops all associated roles

• drops schema

27

assign_schema_owner_user

Input parameters:

• schema_name

• ddl_user_name

• ddl_user_password (opt)

Actions:

• creates user ddl_user_name if it does not exist

• changes password if user exists & password provided

• grants schema owner role to ddl_user_name

28

assign_schema_app_user

Input parameters:

• schema_name

• app_user_name

• app_user_password (opt)

Actions:

• creates user app_user_name if it does not exist

• changes password if user exists & password provided

• grants schema read_write role to app_user_name

29

assign_schema_ro_user

Input parameters:

• schema_name

• ro_user_name

• ro_user_password (opt)

Actions:

• creates user ro_user_name if it does not exist

• changes password if user exists & password provided

• grants schema read_only role to ro_user_name

30

Revoke functions

• revoke_schema_owner_role

• revoke_schema_app_role

• revoke_schema_ro_role

31

Additional security definer functions

• select_all_privileges(): all privileges on the current db

• blocking_processes(): blocking query with superuser privileges

• pg_stat_activity(): pg_stat_activity with superuser privileges

32

Code details

Event trigger forces new object ownership and permissions to the
schema owner

FOR v_obj IN
 SELECT * FROM
pg_event_trigger_ddl_commands ()
 order by object_type desc
LOOP
 <fix perm>
END LOOP

33

Code details
Check whether the current_user:has an ownership role for this schema
(grant execute is not enough)

select
 exists (
 with recursive x as
 (
 select member::regrole,
 roleid::regrole as role
 from pg_auth_members as m
 union all
 select x.member::regrole,
 m.roleid::regrole
 from pg_auth_members as m
 join x on m.member = x.role
)
 select 1
 from x
 where
 (member::text = current_user
 and role = (select nspowner::regrole from pg_namespace
 where nspname=p_schema_name)
 or current_user= (select (nspowner::regrole)::text from pg_namespace
 where nspname=p_schema_name)
));

34

Code details

Checking the execution stack inside security definer function

if not
 perm_check_stack(
'dba_tools.perm_drop_schema_roles')
 then
 raise exception 'You are not allowed
to drop schema %', p_schema_name;
end if;

35

What is there for the users?

• No need for a new database when you
start a new project

• Create new schemas
• Create new users
• Assign and revoke users’ privileges
• Change users’ passwords

You are in control!

36

Future work

• Reporting

• Unit tests

• Conversion automation

And can we make it all happen in Postgres???

37

Where to find me

LinkedIn:

https://www.linkedin.com/in/henrietta-

dombrovskaya-367b26/

GitHub:

https://github.com/hettie-d

Prairie Postgres

prairiepostgres.org

Illinois Prairie PostgreSQL User

Group

https://www.meetup.com/illinois

-prairie-postgresql-user-group

3838

Q&A

Hettie Dombrovskaya

Database Architect DRW

hdombrovska@drwholdings.com

www.drw.com

http://www.drw.com/

	Slide 1
	Slide 2: Who Am I
	Slide 3: What will be covered
	Slide 4: Why this talk?
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Now imagine you have not five, not ten, but 300+ databases, and new requests are coming each day!
	Slide 14: A separate instance for each new project – possible, but expensive.
	Slide 15: Security Models Overview
	Slide 16: Basic principles
	Slide 17: Key features
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Functions
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: What is there for the users?
	Slide 36: Future work
	Slide 37: Where to find me
	Slide 38

