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Who Am I

Hettie Dombrovskaya
• Database Architect at DRW
• Prairie Postgres NFP President 
• Midwest PostgreSQL User Group
• Illinois Prairie PostgreSQL User Group
• ACM Chicago Chapter Communications Chair
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What will be covered
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a • Identifying common security challenges

• What can we do about them?

•  Security framework overview

• Models description

•  How we built it

•  Ongoing issues and future prospects
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Why this 
talk?

- We live in an age of data breaches 

- Securing data is a high priority

- PostgreSQL has everything

- Still…

USER: POSTGRES

SCHEMA: PUBLIC

WHY?!
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Challenge #1: PostgreSQL does 
not force you to create roles 
and schemas in order to start.

And all examples in documentation create objects in 
PUBLIC schema!
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As a result…

▪ Applications are developed using postgres user

▪ When they move to production, developer either forget to change the 

user or run into permissions problems they do not have time  do not 

know how to fix 

▪ When an application uses connection pools different application users 

connect as the same database user
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Challenge #2: The wonders of 
inheritance

- Starting with PG 7.3, there is no distinction between users and roles 

(user=role+login)

create role role1;

create role role2 login password ‘pwd’;

create user user1 password ‘pwd’;

- All grants below will work:

grant role1 to role2;

grant role2 TO user1;

grant user1 to role2;

… and if later you will execute

create role role3;

grant role3 to role1 ---will be inherited
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Challenge #3: You think you 
created a role for a database? 
Think again!

- Roles are created on the instance level, not the database level

- If there are several databases on one instance, all users will have access to 

all databases, because…

 By default, all user have CONNECT privilege to all databases on the 

instance

- Until PG 15, all users could create objects in PUBLIC schema. That 

includes public schema in all databases on the same instance.

 - If a customer requested a superuser privilege, this superuser will be able 

to do everything on all databases on that instance.
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Trying to do things the right way!

Grouping (objects and users): 

 - Using schemas for access control: all objects in each schema have the same set of 

privileges

- Granting privileges to groups (nologin roles) only. And granting roles to users

create schema orders owner orders_owner;

grant orders_owner to orders_admin;

create role orders_read_write;

create role orders_read_only;

grant select on all tables in schema orders to orders_read_only;

grant select, insert, update, delete on all tables in schema 

orders to orders_read_write;

What is not going to work?
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Challenge #4: Default privileges

- Yes, you also need to grant usage!

grant usage on schema orders to orders read_write, orders_read_only

- What else?

alter default privileges in schema orders grant select on tables to 

orders_read_only;

alter default privileges in schema orders grant select, insert, update, 

delete on tables to orders_read_write;

Now:

create table orders.customer (

customer_id int primary key,

customer_name text);

- Why were default permissions not applied?!

alter default privileges in schema orders for role orders_owner grant 

select, insert, update, delete on tables to orders_read_write;
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Challenge #5: The wonders of 
ownership!

-  When you run:

create schema orders owner orders_owner;

It created a lot of privileges for orders_owner user:

grant all on schema orders to orders_owner

- But what happens when you execute 

alter schema orders owner new_orders_owner;

Does anything change with permissions?

NO!
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Challenges #6, #7, #8… Lots of 
weird things!

grant select orders.sales_points to role_ro;

grant insert, update, delete on orders.sales_points to role_app;

grant role_ro to your_user;

grant role_app to your_user;

revoke delete on orders.sales_points from your_user; 

Will this work?

- It won’t, and moreover, errors won’t be reported:

REVOKE of permissions which are not granted
GRANT permissions which are already granted except for roles

- You can’t drop user that has any privileges

- You can’t drop role cascade

- And there is no easy way to see what permissions a given user has!
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Now imagine you have not five, not 

ten, but 300+ databases, and new 

requests are coming each day!
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A separate instance for each 

new project – possible, but 

expensive.
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Security 
Models 

Overview

Principles and implementation 
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• A user is given the minimum levels of 
access needed to perform their job 
functions.

Principle of least privilege

Basic 

principles

The only security model to support multi-

tenancy within one PostgreSQL database

• Non-superuser users do not have a 
way to bypass security settings

Durability

• One package supports four security 
models with different permissions 
hierarchy. 

Flexibility
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Key features
Event trigger

• Schemas and roles creation/deletion are performed using 

security definer functions 

Security-definer functions

• Schema owner TRUE/FALSE

• Account owner TRUE/FALSE

Security levels matrix

• Forces all objects in each schema to be owned by the 

schema owner role and assigns default privileges

• Security modal is set up on the database level

Database level security
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Four Models

Single owner

Schema owner

Account owner

Account and schema owner
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Single owner
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Schema owner
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Account owner
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Account and schema owner
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Enabling security model

• Deploy the package

• If the package was previously deployed, the previous security settings will be used: 

Changing existing settings is manual

• If that’s the first deployment run

select * from grant_create_schema_users(Boolean, Boolean)

This will 

▪ record security setting in the database 

▪ enable event trigger

▪ grant execute on all security-definer functions to the database owner role
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Functions
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create_schema_roles

Input parameters:

• schema_name

• app_user_name (opt)

• app_user_password (opt)

• ro_user_name (opt)

• ro_user_password (opt)

• ddl_user_name (opt)

• ddl_user_password (opt)

• account_owner (opt, default = current user)

Actions:

• creates schema (ownership is driven by security 

settings)

• creates read_write role

• creates read_only role

• creates owner role (if applicable)

• creates/assigns app, ro and owner users
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drop_schema_roles

Input parameters:

• schema_name

Actions:

• revokes read_only role from all users

• revokes read_write from all users

• revokes  owner role (if applicable)

• drops all associated roles

• drops schema
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assign_schema_owner_user

Input parameters:

• schema_name

• ddl_user_name 

• ddl_user_password (opt)

Actions:

• creates user ddl_user_name if it does not exist

• changes password if user exists & password provided

• grants schema owner role to ddl_user_name
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assign_schema_app_user

Input parameters:

• schema_name

• app_user_name 

• app_user_password (opt)

Actions:

• creates user app_user_name if it does not exist

• changes password if user exists & password provided

• grants schema read_write role to app_user_name
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assign_schema_ro_user

Input parameters:

• schema_name

• ro_user_name 

• ro_user_password (opt)

Actions:

• creates user ro_user_name if it does not exist

• changes password if user exists & password provided

• grants schema read_only role to ro_user_name
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Revoke functions

• revoke_schema_owner_role

• revoke_schema_app_role

• revoke_schema_ro_role
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Additional security definer functions

• select_all_privileges(): all privileges on the current db

• blocking_processes(): blocking query with superuser privileges

• pg_stat_activity(): pg_stat_activity with superuser privileges



32

Code details

Event trigger forces new object ownership and permissions to the 
schema owner 

FOR v_obj IN 
  SELECT * FROM       
pg_event_trigger_ddl_commands ()
 order by object_type desc
LOOP
 <fix perm>
END LOOP 
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Code details
Check whether the current_user:has an ownership role for this schema
(grant execute is not enough) 

select
 exists (
   with recursive x as
   (
     select member::regrole,
            roleid::regrole as role
      from pg_auth_members as m
      union all
     select x.member::regrole,
            m.roleid::regrole
      from pg_auth_members as m
      join x on m.member = x.role
     )
     select 1
     from x
     where
        (member::text = current_user 
        and role = (select nspowner::regrole from pg_namespace 
     where nspname=p_schema_name)
    or current_user= (select (nspowner::regrole)::text from pg_namespace 
     where nspname=p_schema_name)
       )  );
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Code details

Checking the execution stack inside security definer function

if not     
   perm_check_stack(
'dba_tools.perm_drop_schema_roles') 
 then 
 raise exception 'You are not allowed 
to drop schema %', p_schema_name;
end if; 
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What is there for the users?

• No need for a new database when you 
start a new project

• Create new schemas
• Create new users
• Assign and revoke users’ privileges
• Change users’ passwords 

You are in control!
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Future work

• Reporting

• Unit tests

• Conversion automation

And can we make it all happen in Postgres???
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Where to find me

LinkedIn:

https://www.linkedin.com/in/henrietta-

dombrovskaya-367b26/ 

GitHub: 

https://github.com/hettie-d 

Prairie Postgres

prairiepostgres.org

Illinois Prairie PostgreSQL User 

Group 

https://www.meetup.com/illinois

-prairie-postgresql-user-group
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Q&A

Hettie Dombrovskaya

Database Architect  DRW

hdombrovska@drwholdings.com

www.drw.com

http://www.drw.com/
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