e oA TS Ay T

DR\\'

Hettie Dombrovskaya
Database Architect

PGDay Chicago 2025

DR\\'

Who Am I

Hettie Dombrovskaya

» Database Architect at DRW

. Prairie Postgres NFP President

*. Midwest PostgreSQL User Group

* lllinois Prairie PostgreSQL User Group
 ACM Chicago Chapter Communications Chair

DR\’

Securing Your PostgreSQL Data

What will be covered

* |dentifying common security challenges
* What can we do about them?
 Security framework overview

e Models description

* How we built it

* Ongoing issues and future prospects

DR\’

Table of Contents

Preface
Challenge #1: PostgreSQL does 1. What Is PostgreSQL?
not force you to create roles 2. A Brief History of PostgreSQL
3. Conventions
and schemas in order to start. 4. Further Information

5. Bug Reporting Guidelines

I TiikAarial

And all examples in documentation create objects in
PUBLIC schema!

e e s e e 4. SQL Syntax
5.5. System Columns
5.6. Modifying Tables 6. Data Manipulation
5.6.1. Adding a Column 7. Queries
5.6.2. Removing a Column 8. Data Types
5.6.3. Adding a Constraint 9. Functions and Operators
5.6.4. Removing a Constraint 10. Type Conversion
5.6.5. Changing a Column's Default Value 11. Indexes
5.6.6. Changing a Column's Data Type 12. Full Text Search
5.6.7. Renaming a Column 13. Concurrency Control

ming a Table 14. Performance Tips

=1a

7. Privileges 15. Parallel Query
5.8. Row Security Policies lll. Server Administration
5.9. Schemas 16. Installation from Binaries
5.9.1. Creating a Schema 17. Installation from Source Code
5.9.2. The Public Schema 18. Installation from Source Code on Windows

5.9.3. The Schema Search Path 19. Server Setup and Operation

anm M~ _at

As a result...

" Applications are developed using postgres user
= When they move to production, developer either forget to change the

user or run into permissions problems they de-nethavetime—do not

know how to fix

" When an application uses connection pools different application users

connect as the same database user

Challenge #2: The wonders of
inheritance

- Starting with PG 7.3, there is no distinction between users and roles
(user=role+login)
create role rolel;
create role role2 login password ‘pwd’;
create user userl password ‘pwd’;
- All grants below will work:
grant rolel to role2;
grant role2 TO userl;
grant userl to role2;
... and if later you will execute

create role role3;

grant role3 to rolel ---will be i1nherited

Challenge #3: You think you
created a role for a database?
Think again!

- Roles are created on the instance level, not the database level

- If there are several databases on one instance, all users will have access to
all databases, because...

By default, all user have CONNECT privilege to all databases on the
Instance
- Until PG 15, all users could create objects in PUBLIC schema. That
includes public schema in all databases on the same instance.

- If a customer requested a superuser privilege, this superuser will be able

to do everything on all databases on that instance.

Trying to do things the right way!

Grouping (objects and users):

- Using schemas for access control: all objects in each schema have the same set of
privileges
- Granting privileges to groups (nologin roles) only. And granting roles to users
create schema orders owner orders_owner;
grant orders_owner to orders_admin;
create role orders_read_write;
create role orders_read_only;
grant select on all tables in schema orders to orders_read_only;

grant select, insert, update, delete on all tables i1n schema

orders to orders_read_write;

What is not going to work?

Challenge #4: Default privileges

- Yes, you also need to grant usage!

grant usage on schema orders to orders read_write, orders_read_only

- What else?

alter default privileges in schema orders grant select on tables to
orders_read_only;

alter default privileges in schema orders grant select, insert, update,
delete on tables to orders_read_write;

Now:

create table orders.customer (

customer_id int primary key,

customer_name text);

- Why were default permissions not applied?!

alter default privileges in schema orders for role orders_owner grant

select, 1nsert, update, delete on tables to orders_read_write;

Challenge #5: The wonders of
ownership!

NO

Challenges #6, #7, #8... Lots of
weird things!

grant select orders.sales_points to role_ro;

grant insert, update, delete on orders.sales_points to role_app;
grant role_ro to your_user;

grant role_app to your_user;

revoke delete on orders.sales_points from your_user;

Will this work?

- It won’t, and moreover, errors won’t be reported:

REVOKE of permissions which are not granted
GRANT permissions which are already granted except for roles

- You can’t drop user that has any privileges
- You can’tdrop role cascade

- And there is no easy way to see what permissions a given user has!

DR\’

Now imagine you have not five, not
ten, but 300+ databases, and new
requests are coming each day!

13

DR\’

A separate instance for each
new project — possible, but
expensive.

14

DR\’

Security
Models
Overview

Principles and implementation

15

DR\’

Principle of least privilege

- A user is given the minimum levels of
access needed to perform their job
functions.

_ Durability
BasicC
pl‘i nCiples - Non-superuser users do not have a
way to bypass security settings

The only security model to support multi-
tenancy within one PostgreSQL database Flexibility

- One package supports four security
models with different permissions
hierarchy.

16

DRW' >

. Security levels matrix

- Schema owner TRUE/FALSE

« Account owner TRUE/FALSE

Database level security

- Security modal is set up on the database level

Security-definer functions

- Schemas and roles creation/deletion are performed using
security definer functions

Key features

Event trigger

- Forces all objects in each schema to be owned by the
schema owner role and assigns default privileges

17

Single owner

p

!IIHIIH

Schema owner

iﬁ

iy

Four Models

Account owner

Database

false/false

db_owner

- all schemas are
owned by database
owner

- read-write and
read-only role per
schema

!I!

Database

true/false

db_owner

- each schema has
it's own owner

- read-write and
read-only role per
schema

- database owner is
granted all schema
owners

Database

false/true

db_owner

-database owner can
create accounts

-each account owns
schemas

- all account roles are
grated to database
owner

- each schema has read-
write and read-only roles

Database

true/true

db_owner

-database owner can create
[accounts

- all account roles are grated to
database owner

-gach account can create schemas
- each schema has it's own owner

- all schema roles are grated to their
[account cwner

- each schema has it's read-write
land read-only role per schema

Single owner

i N Database

false/false

db_owner

- all schemas are
owned by database
owner

- read-write and
read-only role per
schema

Schema owner

e,

Database

true/false

db_owner

- each schema has
it's own owner

- read-write and
read-only role per
schema

- database owner is
granted all schema
OWners

Account owner

E Database

false/true

db_owner

-database owner can
create accounts

-gach account owns
schemas

= all account roles are
grated to database
owWner

- each schema has read-
y write and read-only roles

Account and schema owner

i Database

true/true

db_owner

~database ocwmner can create
accounts

= all account roles are grated 1o
database owner

-aach account can create schemas
- ezach schema has it's own owner

- all schema roles are grated to their
account owner

- mach schama has it's read-write
>, and read-only role per schama

Enabling security model

* Deploy the package
* If the package was previously deployed, the previous security settings will be used:
Changing existing settings is manual

* If that’s the first deployment run

select * from grant_create_schema_users(Boolean, Boolean)
This will

= record security setting in the database

" enable event trigger

= grant execute on all security-definer functions to the database owner role

DR\’

Functions

24

create_schema_roles

INnput parameters.:

« schema_name

« app_user_name (opt)

« app_user_password (opt)

 ro_user_name (opt)

 ro_user_password (opt)

« dd1_user_name (opt)

« dd1_user_password (opt)

« account_owner (opt, default = current user)

Actions:

« creates schema (ownership 1s driven by security
settings)

 Creates read_write role

« creates read_only role

« creates owner role (1f applicable)

« creates/assigns app, ro and owner users

drop_schema_roles

INnput parameters.:

« schema_name

Actions:

« revokes read_only role from all users

e revokes read write from all users

« revokes owner role (1f applicable)
« drops all associated roles

« drops schema

assign_schema_owner_user

INnput parameters.:

« schema_name
e dd1_user_name

« ddl_user_password (opt)

Actions:

« creates user ddl_user_name i1f 1t does not exist
« changes password if user exists & password provided

« grants schema owner role to ddl_user_name

assign_schema_app_user

INnput parameters.:

« schema_name
e app_user_name

« app_user_password (opt)

Actions:

« creates user app_user_name 1f 1t does not exist
« changes password if user exists & password provided

« grants schema read_write role to app_user_name

assign_schema_ro_user

INnput parameters.:

« schema_name
e ro_user_name

 ro_user_password (opt)

Actions:

« creates user ro_user_name 1f 1t does not exist
« changes password if user exists & password provided

« grants schema read_only role to ro_user_name

Revoke functions

« revoke_schema_owner_role

« revoke_schema_app_role

« revoke_schema_ro_role

Additional security definer functions

« select_all_privileges(): all privileges on the current db
« blocking_processes(): blocking query with superuser privileges

« pg_stat_activity(): pg_stat_activity with superuser privileges

Code details

Event trigger forces new object ownership and permissions to the
schema owner

FOR v_obj 1IN

SELECT * FROM
pg_event_trigger_ddl_commands ()
order by object_type desc
LOOP

<fix perm>
END LOOP

Code details

Check whether the current_user:has an ownership role for this schema
(grant execute is not enough)

select
exists (
with recursive x as
(
select member::regrole,
roleid::regrole as role
from pg_auth_members as m
union all
select x.member::regrole,
m.roleid::regrole
from pg_auth_members asm
join x on m.member = x.role
)
select 1
from x
where
(member::text = current_user
and role = (select nspowner::regrole from pg_namespace
where nspname=p_schema_name)
or current_user= (select (nspowner::regrole)::text from pg_namespace
where nspname=p_schema_name)

))

Code details

Checking the execution stack inside security definer function

1t not

perm_check_stack(
"dba_tools.perm_drop_schema_roles')

then

raise exception 'You are not allowed
to drop schema %', p_schema_name;

end 1T;

DR\’

What is there for the users?

* No need for a new database when you
start a new project

* Create new schemas

* Create new users

* Assign and revoke users’ privileges

* Change users’ passwords

You are in control!

35

DR\’

Future work

And can we make it all happen in Postgres???

* Reporting
 Unit tests

e Conversion automation

36

DR\’

Where tO find me Prairie Postgres

prairiepostgres.org

LinkedIn: 0 0
https://www.linkedin.com/in/henrietta- 50 lllinois Prairie PostgreSQL User
dombrovskaya-367b26/ Group

https://www.meetup.com/illinois

-prairie-postgresql-user-group

GitHub:

https://github.com/hettie-d

37

DR\\'

Hettie Dombrovskaya hdombrovska@drwholdings.com

38 Database Architect DRW www.drw.com

http://www.drw.com/

	Slide 1
	Slide 2: Who Am I
	Slide 3: What will be covered
	Slide 4: Why this talk?
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Now imagine you have not five, not ten, but 300+ databases, and new requests are coming each day!
	Slide 14: A separate instance for each new project – possible, but expensive.
	Slide 15: Security Models Overview
	Slide 16: Basic principles
	Slide 17: Key features
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Functions
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: What is there for the users?
	Slide 36: Future work
	Slide 37: Where to find me
	Slide 38

