\& lL

Recovering from a Split Brain

(starring pg_waldump and pg_rewind)

SR

tree Payments

N

Bra

PostgreSQL Contributor

Background

* PostgreSQL clusters are often deployed with at least two nodes: a primary
and a synchronous replica (via physical replication).

* Typically availability of nodes in that cluster is managed automatically by
external control.

* In our case, Pacemaker manages failovers, and, before promoting a replica
fences/STONITHs the primary via PDU control.

* We would rather take an outage than suffer a split brain.

What’s a Split-Brain?

* |n a cluster of database nodes, a split brain occurs when (often due to some
kind of network partition) multiple nodes believe they are the primary node.

 Suppose we have a timeline of operations:

Primary A

>

s T e
45 6
Primary B

Sidebar: HA Configuration

* Unless you absolutely value uptime over data consistency, a failure to fence
the current primary must mean failing to promote a new primary.

* Understanding tradeoffs between availability and consistency is important.

* Personal opinion: it’s easy to assume you would prefer uptime over data
consistency. But data inconsistency, e.g. a split brain, can be extremely
painful.

* Know how your setup works and what tradeoffs the business is
comfortable with!

Suppose Fencing Fails...

* ...but reports success.
* Now we have a split-brain!

* (Not fun in production, but...fun for a presentation!)

Sidebar:
Why Should You Care?

Sidebar: Why Care?

 Even with all of the “right” tooling, the longer you run and the larger you
grow, something (more than one thing) is going to bite you in production.

* It’'s a good idea to think about potential failure modes in advance, and have
an idea of how you might investigate and respond to various ones.

* |In the moment is not the time you want to be trying to find out the tools
we’re using In this talk even exist!

* I’ve read postmortems of more than one high-profile incident.

We’ve split-brained; now what?

* First, we want to investigate what’s changed on each primary since the split.
* WAL encodes all changes, so how about:
* Logical decoding? Nope, can’t replay.

* pg_waldump/pg_xlogdump

pg_waldump

* Docs:
* “display a human-readable rendering of the write-ahead log...”
o “...Is mainly useful for debugging or educational purposes.”

* Let’s try it out!

Investigating a Split Brain

* First we need to know the point in WAL where the two primaries diverged.

LOG: received promote request
FATAL: terminating walreceiver process due to administrator
command
LOG: 1nvalid record length at 3583/A6D4B9A0: wanted 24, got O
LOG: redo done at 3583/A6D4B960
LOG: Llast completed transaction was at log time
2019-08-22 22:06:31./77/5485+00
LOG: selected new timeline ID: 6

Investigating a Split Brain

* So we have two indexes into the WAL stream to guide us:
 3583/A6D4B960: Last successfully applied record from primary.

 3583/A6D4B9A0: First divergent record.

Sidebar: WAL Position Numbering

* A position in WAL is a 64-bit integer, but is printed as two 32-bit hex-

encoded values separated by a slash, trimming more than one leading zero
on the values.

* E.g., 3583/A6D4B960 is really hex 00-00-35-83-A6-D4-B9-60

Sidebar: WAL Segment Numbering

* Postgres includes many functions for working with WAL positions and
segment filenames to make this easier.

* A much more detailed explanation is available in this blog post:

* http://eulerto.blogspot.com/2011/11/understanding-wal-nomenclature.html

 But as a quick summary...

http://eulerto.blogspot.com/2011/11/understanding-wal-nomenclature.html

Sidebar: WAL Segment Numbering

* WAL file segments are named on disk as a 24 character hex string; 8 for the

timeline, 8 for the logical WAL file, and 8 for the offset within that logical WAL
file.

 E.g., WAL position 3583/A6D4B960 (assuming timeline 1) is in the WAL
segment named 0000000100003583000000A6.

* Note: watch out for dropped leading zeros when trying to figure this out!

Investigating a Split Brain

* First we have to have a split brain to investigate!
* Pretty simple to manually simulate:
* Just promote a replica without fencing the existing primary.

* Let’s try it out!

Understanding the Divergence

* We can look at pg_waldump output and see the kinds of operations that have
occurred since the divergence, but that output isn’t overly helpful at the
application or business domain level.

 Exception: if there are no COMMIT records on one of the primaries after

the divergence point, then we can conclude there is no functional
divergence.

* But we really want to know domain impact. For example, we want know the
tables (and ideally tuples values) changed on the divergent primary.

Understanding the Divergence

 So how do we determine domain impact?
* |dentify all transaction IDs that were committed after the divergence point.
 Convert WAL operations into tuple data.

* Manually investigate business impact/conflicts/etc.

Understanding the Divergence

* |dentify all transaction IDs that were committed after the divergence point.

* As simple as using grep, awk, and sed on pg_waldump output.

pg_wa ldump .. |
grep COMMIT | awk '{ print $8; }' | sed 's/,//'
> committed txids.txt

Understanding the Divergence

 Convert WAL operations into tuple data.

* First, dump relevant WAL. Consider this sequence of operations:

1. BEGIN;

2 INSERdE T,

3. <split brain>
4, COMMIT;

* Have to start far enough before the divergence point to include all
transactions iIn flight at the divergence point.

Understanding the Divergence

 Convert WAL operations into tuple data.
 Second, parse out txid, relfilenode, block, offset, (logical) operation type.

* Additionally, while parsing fields, keep track of chain of ctids to find the
most recent tuple. Consider this sequence of operations:

1. <split brain>

2. UPDATE .. WHERE pk
3. UPDATE .. WHERE pk
4, COMMIT;

11l
=

* We only need (and can only easily find) the last version of a given row.

Understanding the Divergence

 Convert WAL operations into tuple data.

* Finally, we can use that information to query the diverging primary to find
the actual data inserted or updated.

* Unfortunately we can’t easily figure out things that were deleted (unless it
still exists on the original primary and we can find it there).

e We also lose intermediate states of rows.

* But even so we can get a reasonable view of activity post-divergence.

Understanding the Divergence

Convert WAL operations into tuple data.
* It all sounds intriguing, but how do we actually do it?

* This is where the “and some custom scripting” in the abstract comes into
play.

Let’s try it out!

Understanding the Divergence

* Manually investigate business impact/conflicts/etc.

* May want to investigate both primaries; whichever has the highest number
of changes might be the one you want to keep around as the long-term

primary.

* This step Is really up to you!

Restoring the Cluster

* Now that we've captured the information necessary to investigate the split
brain, we want to bring the diverging node back into the cluster.

* Prior to PostgreSQL 9.5, we had to re-sync the data directory, much as if we

were adding an entirely new node to the cluster. But that takes a long time
with TB of data!

* Enter pg_rewind (added to PostgreSQL in version 9.5)!

pg_rewind

* Conceptually: according to the docs, resets the state of the data directory to
the point™ at which the divergence happened.

* Requirements:
* Cluster was initialized with data checksums or has wal_log_hints on.

* The replica to have all WAL (beginning before the divergence) available (or,
If not directly, you can set a restore command to retrieve it).

pg_rewind: Detalils

* Copies all config files, so be careful to make sure they’re correct!

* Resets data files to the divergence point p/lus any changes on the source
primary to the same blocks.

* Therefore, by itself does not result in an immediately usable node.

pg_rewind: Detalils

* After “rewinding”, the replica needs to stream/restore all of the primary’s
WAL beginning at the divergence point to be consistent.

* The WAL is part of syncing the data directory, so when PostgreSQL starts
that WAL will be replayed.

* But if you don’t setup a recovery.conf first you’ll be at a split brain again!

* Let’s try it out!

Summary

* Your HA configuration should make split brains impossible.

* We used pg_waldump’s (semi) human-readable output to diagnose what
happened after a split brain.

* We used pg_rewind to restore the divergent node to a consistent replica
state and reintroduced it to the cluster.

