
Recovering from a Split Brain
(starring pg_waldump and pg_rewind)

About Me

• Software Engineer

• Team DB

• Braintree Payments

• PostgreSQL Contributor

Background

• PostgreSQL clusters are often deployed with at least two nodes: a primary
and a synchronous replica (via physical replication).

• Typically availability of nodes in that cluster is managed automatically by
external control.

• In our case, Pacemaker manages failovers, and, before promoting a replica
fences/STONITHs the primary via PDU control.

• We would rather take an outage than suffer a split brain.

What’s a Split-Brain?
• In a cluster of database nodes, a split brain occurs when (often due to some

kind of network partition) multiple nodes believe they are the primary node.

• Suppose we have a timeline of operations:

1 2 3
Primary

4 5 6
Primary A

4’ 5’ 6’
Primary B

1 2 3
Replica

Sidebar: HA Configuration
• Unless you absolutely value uptime over data consistency, a failure to fence

the current primary must mean failing to promote a new primary.

• Understanding tradeoffs between availability and consistency is important.

• Personal opinion: it’s easy to assume you would prefer uptime over data
consistency. But data inconsistency, e.g. a split brain, can be extremely
painful.

• Know how your setup works and what tradeoffs the business is
comfortable with!

Suppose Fencing Fails…

• …but reports success.

• Now we have a split-brain!

• (Not fun in production, but…fun for a presentation!)

Sidebar:
Why Should You Care?

Sidebar: Why Care?

• Even with all of the “right” tooling, the longer you run and the larger you
grow, something (more than one thing) is going to bite you in production.

• It’s a good idea to think about potential failure modes in advance, and have
an idea of how you might investigate and respond to various ones.

• In the moment is not the time you want to be trying to find out the tools
we’re using in this talk even exist!

• I’ve read postmortems of more than one high-profile incident.

We’ve split-brained; now what?

• First, we want to investigate what’s changed on each primary since the split.

• WAL encodes all changes, so how about:

• Logical decoding? Nope, can’t replay.

• pg_waldump/pg_xlogdump

pg_waldump

• Docs:

• “display a human-readable rendering of the write-ahead log…”

• “…is mainly useful for debugging or educational purposes.”

• Let’s try it out!

<terminal demo>

Investigating a Split Brain

• First we need to know the point in WAL where the two primaries diverged.

LOG: received promote request
FATAL: terminating walreceiver process due to administrator
 command
LOG: invalid record length at 3583/A6D4B9A0: wanted 24, got 0
LOG: redo done at 3583/A6D4B960
LOG: last completed transaction was at log time
 2019-08-22 22:06:31.775485+00
LOG: selected new timeline ID: 6

Investigating a Split Brain

• So we have two indexes into the WAL stream to guide us:

• 3583/A6D4B960: Last successfully applied record from primary.

• 3583/A6D4B9A0: First divergent record.

Sidebar: WAL Position Numbering

• A position in WAL is a 64-bit integer, but is printed as two 32-bit hex-
encoded values separated by a slash, trimming more than one leading zero
on the values.

• E.g., 3583/A6D4B960 is really hex 00-00-35-83-A6-D4-B9-60

Sidebar: WAL Segment Numbering

• Postgres includes many functions for working with WAL positions and
segment filenames to make this easier.

• A much more detailed explanation is available in this blog post:

• http://eulerto.blogspot.com/2011/11/understanding-wal-nomenclature.html

• But as a quick summary…

http://eulerto.blogspot.com/2011/11/understanding-wal-nomenclature.html

Sidebar: WAL Segment Numbering

• WAL file segments are named on disk as a 24 character hex string; 8 for the
timeline, 8 for the logical WAL file, and 8 for the offset within that logical WAL
file.

• E.g., WAL position 3583/A6D4B960 (assuming timeline 1) is in the WAL
segment named 0000000100003583000000A6.

• Note: watch out for dropped leading zeros when trying to figure this out!

Investigating a Split Brain

• First we have to have a split brain to investigate!

• Pretty simple to manually simulate:

• Just promote a replica without fencing the existing primary.

• Let’s try it out!

<terminal demo>

Understanding the Divergence

• We can look at pg_waldump output and see the kinds of operations that have
occurred since the divergence, but that output isn’t overly helpful at the
application or business domain level.

• Exception: if there are no COMMIT records on one of the primaries after
the divergence point, then we can conclude there is no functional
divergence.

• But we really want to know domain impact. For example, we want know the
tables (and ideally tuples values) changed on the divergent primary.

Understanding the Divergence

• So how do we determine domain impact?

• Identify all transaction IDs that were committed after the divergence point.

• Convert WAL operations into tuple data.

• Manually investigate business impact/conflicts/etc.

Understanding the Divergence

• Identify all transaction IDs that were committed after the divergence point.

• As simple as using grep, awk, and sed on pg_waldump output.

pg_waldump … |
 grep COMMIT | awk '{ print $8; }' | sed ’s/,//'
 > committed_txids.txt

Understanding the Divergence

• Convert WAL operations into tuple data.

• First, dump relevant WAL. Consider this sequence of operations: 
 
 
 

• Have to start far enough before the divergence point to include all
transactions in flight at the divergence point.

1. BEGIN;
2. INSERT …;
3. <split brain>
4. COMMIT;

Understanding the Divergence

• Convert WAL operations into tuple data.

• Second, parse out txid, relfilenode, block, offset, (logical) operation type.

• Additionally, while parsing fields, keep track of chain of ctids to find the
most recent tuple. Consider this sequence of operations: 
 
 
 

• We only need (and can only easily find) the last version of a given row.

1. <split brain>
2. UPDATE … WHERE pk = 1;
3. UPDATE … WHERE pk = 1;
4. COMMIT;

Understanding the Divergence

• Convert WAL operations into tuple data.

• Finally, we can use that information to query the diverging primary to find
the actual data inserted or updated.

• Unfortunately we can’t easily figure out things that were deleted (unless it
still exists on the original primary and we can find it there).

• We also lose intermediate states of rows.

• But even so we can get a reasonable view of activity post-divergence.

Understanding the Divergence

• Convert WAL operations into tuple data.

• It all sounds intriguing, but how do we actually do it?

• This is where the “and some custom scripting” in the abstract comes into
play.

• Let’s try it out!

<terminal demo>

Understanding the Divergence

• Manually investigate business impact/conflicts/etc.

• May want to investigate both primaries; whichever has the highest number
of changes might be the one you want to keep around as the long-term
primary.

• This step is really up to you!

Restoring the Cluster

• Now that we’ve captured the information necessary to investigate the split
brain, we want to bring the diverging node back into the cluster.

• Prior to PostgreSQL 9.5, we had to re-sync the data directory, much as if we
were adding an entirely new node to the cluster. But that takes a long time
with TB of data!

• Enter pg_rewind (added to PostgreSQL in version 9.5)!

pg_rewind

• Conceptually: according to the docs, resets the state of the data directory to
the point* at which the divergence happened.

• Requirements:

• Cluster was initialized with data checksums or has wal_log_hints on.

• The replica to have all WAL (beginning before the divergence) available (or,
if not directly, you can set a restore command to retrieve it).

pg_rewind: Details

• Copies all config files, so be careful to make sure they’re correct!

• Resets data files to the divergence point plus any changes on the source
primary to the same blocks.

• Therefore, by itself does not result in an immediately usable node.

pg_rewind: Details

• After “rewinding”, the replica needs to stream/restore all of the primary’s
WAL beginning at the divergence point to be consistent.

• The WAL is part of syncing the data directory, so when PostgreSQL starts
that WAL will be replayed.

• But if you don’t setup a recovery.conf first you’ll be at a split brain again!

• Let’s try it out!

<terminal demo>

Summary

• Your HA configuration should make split brains impossible.

• We used pg_waldump’s (semi) human-readable output to diagnose what
happened after a split brain.

• We used pg_rewind to restore the divergent node to a consistent replica
state and reintroduced it to the cluster.

Q/A
Talk Materials: https://github.com/jcoleman/Split-Brain-Recovery

