9 enova.

Srivathsava Rangarajan

Explain Plans and You.
2019/09/13

Disclaimer: Here there may be no dragons.

What is this talk not about?
* Innovation, development and advances in PostgreSQL and new features

* Brilliant depth first analysis of a single facet of PostgreSQL

What is this talk about?
* Whatis an explain plan.

* Analyzing the anatomy of the explain plan.
* Forewords on complexity, indices, joins and sequential scans wrt explain plans

Why are you giving this talk?

e lassume that | can’t be alone in having had a non-traditional introduction to RDBMSes given the
low barrier to entry for SQL

* | assume that not many non-command line people may even be aware of EXPLAIN

Why are *you®* giving this talk?

* | am the principal software engineer for underwriting services at a billion$ financial company
* My team owns 15+ services that use more than 6 types of persistence technologies

* My team owns services running over a couple of terabytes of transactional PostgreSQL data that
need to have sub 100ms response times

2 — September 13, 2019 Confidential @ enova.

Where is it you work again?

Enova: Chicago based FinTech Lending and Analytics/aa/Service

Sizeable PostgreSQL shop:
* 300+ production clusters, 500+ production databases
* > 10 databases of TB+ size

Great:
* People, value, leadership, opportunities

As is every company, we are hiring!
* Ifinterested, please contact me: srangarajan@enova.com

3 — September 13, 2019 Confidential @ enova.

A Gentle™ |Introduction to:

What in the world the PostgreSQL optimizer is
doing with your poor query

g enova.

Why and when should you care?

First, remember that PostgreSQL runs a cost based optimizer.

* In other words, PostgreSQL decides using statistics as to what the best approach to running your
qguery is

Explain plans lie at the heart of how fast your query is going to run.
* Itis not absolute, hardware plays a significant role.
* Understanding it will help you squeeze every bit you can out of the optimizer.

We can’t “control” the optimizer, but if we understand why it does what it does, we can
have a better relationship with it.
* Optimizer can’t be hinted.

* But the optimizer is smart.

What is fast today, may turn out to be slow tomorrow.
* Explain plans may help you foresee problems that are coupled with volume.
* Prevention is better than cure.

5 — September 13, 2019 Confidential @ enova.

How do I?

EXPLAIN [query]

* Explains the plan/play the optimizer *thinks* it is going to run to execute your query using
estimates.

EXPLAIN ANALYZE [query].

* Explains the plan/play the optimizer *actually executed* by *actually executing® your query.
Interesting to note that estimates may be off.

6 — September 13, 2019 Confidential @ enova.

The Anatomy of an Explain Plan

QUERY PLAN

Unique (cost=22.67..22.70 rows=2 width=44) (actual time=0.066..0.067 rows=1 loops=1)
-> Sort (cost=22.67..22.68 rows=3 width=44) (actual time=0.065..0.065 rows=2 loops=1)
Sort Key: la.account_id, la.external_entity_id, la.created_at
Sort Method: quicksort Memory: 25kB
—————> Hash Join (cost=10.66..22.65 rows=3 width=44) (actual time=0.048..0.052 rows=2 loops=1)
Hash Cond: (la.loan_application_status_id = loan_application_statuses.loan_application_status_id)
—> Bj ications la (cost=9.21..21.16 rows=3 width=36) (actual time=0.022..0.025 rows=2 loops=1)
dRecheck Cond: ziaccount_id = %Y ('{7812011}'::integer([])) OR (external_entity_id = ANY ('{NULL}'::integer([])))
-> BitmapOr (cost=9.21..9.21 rows=3 width=0) (actual time=0.016..0.016 rows=0 loops=1)
11 -> Bitmap Index Scan on index loan_applications_on_account_id (cost=0.00..4.62 rows=3 width=0) (actual time=0.014..0.014 rows=2 loops=1)
. = :iinteger
-> Bitmap Index Scan on 1ndex loan_applications_on_external_entity_id (cost=0.00..4.60 rows=1 width=0) (actual time=0.001. 01&01 rovls=0 loops=1)
Index Cond: (external_entity_id = ANY ('{NULL}'::integer([]))
-> Hash (cost=1.20..1.20 rows=20 width=16) (actual time=0.016..0.016 rows=20 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 1kB
-> Seq Scan on loan_application_statuses (cost=0.00..1.20 rows=20 width=16) (actual time=0.004..0.007 rows=20 loops=1)
[0 a;“runtime: 0.122 ms
s)

3 |Node: What is happening in this step? Feed result to parent Node.

-> Relation: What is it happening on? Table or result of child Node?

> Cost: Relatively how expensive is this step?

-> Modifier: Tweak result before handoff.

Rows: How many rows will be returned by this Node. <€
Loops: How many times will this step be executed. <€

7 — September 13, 2019 Confidential @ enova.

The Negative of an Explain Plan

(la.account_id, la.external_entity_id)
loan_applications la
JOIN loan_application_statuses USING (loan_application_status_id)
la.account_id = ANY(ARRAY[7812011]::INTEGERI[])
la.external_entity_id = ANY(ARRAY []::INTEGERI[])
la.account_id, la.external_entity_id, la.created_at

QUERY PLAN
Unique\y(cost=22.67..22.70 rows=2 width=44) (actual time=0.066..0.067 rows=1 loops=1)
-> Sort (cost=22.67..22.68 rows=3 width=44) (actual time=0.065..0.065 rows=2 loops=1)
Sort Key: la.account_id, la.external_entity id, la.created_at
Sort Method: quicksort Memory: 25kB
-> Hash Join (cost=10.66..22.65 rows=3 width=44) (actual time=0.048..0.052 rows=2 loops=1) <€
Hash Cond: (la.loan_application_status_id = loan_application_statuses.loan_application_status_id)
-> Bitmap Heap Scan on loan_applications la (cost=9.21..21.16 rows=3 width=36) (actual time=0.022..0.025 rows=2 loops=1)
Recheck Cond: ((account_id = ANY ('{7812011}'::integer([])) OR (external_entity_id = ANY ('{NULL}'::integer[])))
-> BitmapOr (cost=9.21..9.21 rows=3 width=0) (actual time=0.016..0.016 rows=0 loops=1)
-> Bitmap Index Scan on index_loan_applications_on_account_id (cost=0.00..4.62 rows=3 width=0) (actual time=0.014..0.014 rows=2 loops=1)
Index Cond: (account_id = ANY ('{7812011}'::integer[]))
-> Bitmap Index Scan on index_loan_applications_on_external_entity_id (cost=0.00..4.60 rows=1 width=0) (actual time=0.001..0.001 rows=0 loops=1)
Index Cond: (external_entity id = ANY ('{NULL}'::integer[]))
-> Hash (cost=1.20..1.20 rows=20 width=16) (actual time=0.016..0.016 rows=20 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 1kB
-> Seq Scan on loan_application_statuses (cost=0.00..1.20 rows=20 width=16) (actual time=0.004..0.007 rows=20 loops=1)
Total runtime: 0.122 ms
(17 rows)

8 — September 13, 2019 Confidential @ enova.

A Word on Costs

It’s all relative.
* Don’t get caught up in the number. It means as much as saying | have a power level of 9001.

Computed based on a combination of 1/0, CPU and memory costs.
* Weighted based on numbers set in configuration.

But, since it’s relative, you can COMPARE costs between Nodes to identify/diagnose the
areas for optimization.

9 — September 13, 2019 Confidential @ enova.

Live Experiments: Setup

'sandbox_development=# \d hashes
Table "public.hashes"

Column | Type | Collation | Nullable | Default

hash_id | integer | | not null | nextval('hashes_hash_id_seq'::regclass)
algorithm | text | | |
Indexes:

"hashes_pkey" PRIMARY KEY, btree (hash_id)
Referenced by:
TABLE "hash_test" CONSTRAINT "hash_test_hash_id_fkey" FOREIGN KEY (hash_id) REFERENCES hashes(hash_id)

'sandbox_development=# \d hash_test
Table "public.hash_test"

Column | Type | Collation | Nullable | Default
hash_test_id | integer | | not null | nextval('hash_test_hash_test_id_seq'::regclass)
hash_id | integer | | |
code | text | | |
hash | integer | | [
Indexes:

"hash_test_pkey" PRIMARY KEY, btree (hash_test_id)
"hash_test_hash_id_idx" btree (hash_id)
"hash_test_hash_idx" btree (hash)
Foreign—-key constraints:
"hash_test_hash_id_fkey" FOREIGN KEY (hash_id) REFERENCES hashes(hash_id)

#rows in hashes =5
#rows in hash_test =~ 13,300,000
#distinct hashes in hash_test =~ 13,300,000 / 5

10 — September 13, 2019 Confidential @ enova.

Foreword on Complexities

...i....fal.)t.'c-dﬁs'taht._.t.flﬂéth.jwr.!............................"‘.‘HF.""“S‘faﬂt._'c.ﬂlféCH.Ihﬂ..{..............................
i 1..10 i 1..10000000000000000000000 {

O(c) -> O(1)

I}Plflll_llllllllflll{lllll_llfllll_lll L e I A e ey
19 func polynomial_time(n 1nt’I func polynomial_time(n int)

20 i 1..n { i 1..10 {

21 i 1..n { i 1..n {

22 i ; i i 1..n {

23 i 1..n {
24 O(c*n*n*n) -> O(n3)
25

26

27

28 }
29 }

BN AN NI NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN EEEE NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN EEEE NN EEEEEEEEER
EEFEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE NN NN NN SN NN EE NN NN NS FEEEEEEEEEEEEEEEE SN NN S SN NN EEEEEEE SN NN EEEEEEE SN NN EEEEEEEEEEEEEEER

31 func exp_time(n int) { func exp_time(n int) {
32 i 1..2" i 1..10 {

33 i 1..2'n {
34 } O(c*2*n) -> O(2")
35 }

36

11 — September 13, 2019 Confidential @ enova.

Are good. We want. Mostly.
* Overhead presents itself in INSERT/UPDATE/DELETE costs of maintaining a balanced tree
* Makes searches O(log(M)) where M is the size of the table.

Node:
* Anindex scan node looks something like this:

Index Scan using hash_test_hash_idx on hash_test (cost=0.56..11.84 rows=114 width=28) (actual time=0.009..0.024 rows=94 loops=1)
Index Cond: ((hash >= 1) AND (hash <= 10))

* Usually when one encounters such a node, safe to move on.

The “opposite” of this is:
* A sequential scan of your table looks something like this:

Gather (cost=1000.00..279692.06 rows=1 width=28) (actual time=665.159..665.179 rows=94 loops=1)
Workers Planned: 2
Workers Launched: 2
-> Parallel Seq Scan on hash_test (cost=0.00..278691.96 rows=1 width=28) (actual time=480.913..653.764 rows=31 loops=3)
Filter: ((hash >= 1) AND (hash <= 10))
Rows Removed by Filter: 4433302

* If by your estimates, your query should run faster, might be worth looking for a node that looks
like that

12 — September 13, 2019 Confidential @ enova.

Assuming 2 tables of sizes N and M rows, N < M.

Nested Loop:
* Worst case O(N*M)
* Usually a significantly small table + portion of an indexed larger table

sandbox_development=# explain analyze select * from hash_test join hashes using(hash_id) where algorithm = 'bumpy';

Hash:
e Worst case O(N*h_+ M*h_)
* Since h_and h_, are typically independent of input, O(N+M)
* Either missing index, or joins very large portion of bigger table

sandbox_development=# explain analyze select * from hash_test join hashes using(hash_id);

Merge:
* Worst case O(N+M)
* Joined on equality only
* Both “node inputs” sorted on join key

sandbox_development=# explain analyze select * from hash_test join hashes using(hash_id) order by hash_id limit 1000000;

13 — September 13, 2019 Confidential @ enova.

Sequential Scans

Usually bad. This is usually a prime candidate for optimization.
Usually.

3 caveats:

* You need all the data from the table anyway

sandbox_developmént=# explain analyze select * from hash_test;
QUERY PLAN

Seq Scan on hash_test (cost=0.00..328553.73 rows=13296473 width=28) (actual time=0.012..1589.238 rows=13300001 loops=1)
Planning time: 0.085 ms

Execution time: 2333.155 ms
(3 rows)

* You need so much data from the table that indices are just an overhead (~ >8%)
o» Your table is so small that indices are an overhead

sandbox_development=# explain analyze select *x from hash_test join hashes using(hash_id) where algorithm in ('bumpy', 'collidey');
QUERY PLAN

Hash Join (cost=1.09..472821.55 rows=5318589 width=34) (actual time=0.074..3621.167 rows=5323082 loops=1)
Hash Cond: (hash_test.hash_id = hashes.hash_id)
-> Seq Scan on hash_test (cost=0.00..328553.73 rows=13296473 width=28) (actual time=0.012..1646.144 rows=13300001 loops=1)
-> Hash (cost=1.06..1.06 rows=2 width=10) (actual time=0.014..0.014 rows=2 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 9kB
-> Seq Scan on hashes (cost=0.00..1.06 rows=2 width=10) (actual time=0.009..0.011 rows=2 loops=1)
Filter: (algorithm = ANY ('{bumpy,collidey}'::text[]))
Rows Removed by Filter: 3
Planning time: 0.306 ms
Execution time: 3925.430 ms
(10 rows)

14 — September 13, 2019 Confidential @ enova.

Bitmap Index and Heap Scans

1 part slower than a pure index scan.
1 part faster than a sequential scan.
98 parts full awesome.

Bitmap Index + Heap scan (OR):

[sandbox_development=# SET enable_seqscan = OFF;]

SET

[sandbox_development=# explain analyze select * from hash_test where hash_id = 1 or hash_id = 3; |
QUERY PLAN

Bitmap Heap Scan on hash_test (cost=176598.31..452837.08 rows=4833118 width=28) (actual time=323.013..1498.157 rows=5319772 loops=1)
Recheck Cond: ((hash_id = 1) OR (hash_id = 3))
Rows Removed by Index Recheck: 2689820
Heap Blocks: exact=64588 lossy=33033
—> BitmapOr (cost=176598.31..176598.31 rows=5376651 width=0) (actual time=312.913..312.913 rows=0 loops=1)
-> Bitmap Index Scan on hash_test_hash_id_idx (cost=0.00..86939.98 rows=2683672 width=0) (actual time=168.812..168.812 rows=2658453 loops=1)
Index Cond: (hash_id = 1)
—> Bitmap Index Scan on hash_test_hash_id_idx (cost=0.00..87241.78 rows=2692979 width=0) (actual time=144.099..144.099 rows=2661319 loops=1)
Index Cond: (hash_id = 3)
Planning time: 0.096 ms
Execution time: 1800.150 ms
(11 rows)

Bitmap Heap scan (fetch optimization):

sandbox_development=# explain analyze with c as (select array[1,2,3] as a) select x from hash_test join c on hash_id = any(c.a);
QUERY PLAN

Nested Loop (cost=296287.40..877611.61 rows=650063 width=60) (actual time=470.691..3190.652 rows=7982393 loops=1)
CTE ¢
-> Result (cost=0.00..0.01 rows=1 width=32) (actual time=0.001..0.001 rows=1 loops=1)
[—=> CTE Scan on ¢ (cost=0.00..0.02 rows=1 width=32) (actual time=0.003..0.004 rows=1 loops=1)
-> Bitmap Heap Scan on hash_test (cost=296287.39..758923.83 rows=11868775 width=28) (actual time=470.680..2050.699 rows=7982393 loops=1)
Recheck Cond: (hash_id = ANY (c.a))
Rows Removed by Index Recheck: 1793542
Heap Blocks: exact=64759 lossy=33033
—> Bitmap Index Scan on hash_test_hash_id_idx (cost=0.00..293320.20 rows=11868775 width=0) (actual time=459.391..459.391 rows=7982393 loops=1)
Index Cond: (hash_id = ANY (c.a))
Planning time: 0.169 ms
Execution time: 3651.267 ms
(12 rows)

15 — September 13, 2019 Confidential @ enova.

JF IALCINI

ND TEAMWORK
THaNK You opsuar
L =
§< = OWNER
S22 TOPTALEN

AND TEAMWORI

BEST
ACCOUNTABLE
WINS FOR RESULTS

TOAD) TAIEAT

