
Srivathsava Rangarajan

Explain Plans and You.
2019/09/13



2 — September 13, 2019 Confidential

Disclaimer: Here there may be no dragons.

What is this talk not about?
• Innovation, development and advances in PostgreSQL and new features
• Brilliant depth first analysis of a single facet of PostgreSQL

What is this talk about?
• What is an explain plan.
• Analyzing the anatomy of the explain plan.
• Forewords on complexity, indices, joins and sequential scans wrt explain plans

Why are you giving this talk?
• I assume that I can’t be alone in having had a non-traditional introduction to RDBMSes given the 

low barrier to entry for SQL
• I assume that not many non-command line people may even be aware of EXPLAIN

Why are *you* giving this talk?
• I am the principal software engineer for underwriting services at a billion$ financial company
• My team owns 15+ services that use more than 6 types of persistence technologies
• My team owns services running over a couple of terabytes of transactional PostgreSQL data that 

need to have sub 100ms response times



3 — September 13, 2019 Confidential

Where is it you work again?

Enova: Chicago based FinTech Lending and Analytics/aa/Service

Sizeable PostgreSQL shop:
• 300+ production clusters, 500+ production databases
• > 10 databases of TB+ size

Great:
• People, value, leadership, opportunities

As is every company, we are hiring!
• If interested, please contact me: srangarajan@enova.com



A GentleTM Introduction to:

What in the world the PostgreSQL optimizer is 
doing with your poor query



5 — September 13, 2019 Confidential

First, remember that PostgreSQL runs a cost based optimizer.
• In other words, PostgreSQL decides using statistics as to what the best approach to running your 

query is

Explain plans lie at the heart of how fast your query is going to run.
• It is not absolute, hardware plays a significant role.

• Understanding it will help you squeeze every bit you can out of the optimizer.

We can’t “control” the optimizer, but if we understand why it does what it does, we can 
have a better relationship with it.

• Optimizer can’t be hinted.

• But the optimizer is smart.

What is fast today, may turn out to be slow tomorrow.
• Explain plans may help you foresee problems that are coupled with volume.

• Prevention is better than cure.

Why and when should you care?



6 — September 13, 2019 Confidential

EXPLAIN [query]
• Explains the plan/play the optimizer *thinks* it is going to run to execute your query using 

estimates.

EXPLAIN ANALYZE [query].
• Explains the plan/play the optimizer *actually executed* by *actually executing* your query. 

Interesting to note that estimates may be off.

How do I?



7 — September 13, 2019 Confidential

The Anatomy of an Explain Plan

Node: What is happening in this step? Feed result to parent Node.

Relation: What is it happening on? Table or result of child Node?

Cost: Relatively how expensive is this step?

Modifier: Tweak result before handoff.
Rows: How many rows will be returned by this Node.

Loops: How many times will this step be executed.



8 — September 13, 2019 Confidential

The Negative of an Explain Plan



9 — September 13, 2019 Confidential

A Word on Costs

It’s all relative.
• Don’t get caught up in the number. It means as much as saying I have a power level of 9001.

Computed based on a combination of I/O, CPU and memory costs.
• Weighted based on numbers set in configuration.

But, since it’s relative, you can COMPARE costs between Nodes to identify/diagnose the 
areas for optimization.



10 — September 13, 2019 Confidential

Live Experiments: Setup

#rows in hashes = 5
#rows in hash_test =~ 13,300,000
#distinct hashes in hash_test =~ 13,300,000 / 5



11 — September 13, 2019 Confidential

Foreword on Complexities

O(c) -> O(1)

O(n/i^x = 1) -> O(logx(n))

O(c*n) -> O(n)

O(c*n*n*n) -> O(n3)

O(c*2*n) -> O(2n)



12 — September 13, 2019 Confidential

Indices

Are good. We want. Mostly.
• Overhead presents itself in INSERT/UPDATE/DELETE costs of maintaining a balanced tree

• Makes searches O(log(M)) where M is the size of the table.

Node:
• An index scan node looks something like this:

• Usually when one encounters such a node, safe to move on.

The “opposite” of this is:
• A sequential scan of your table looks something like this:

• If by your estimates, your query should run faster, might be worth looking for a node that looks 

like that



13 — September 13, 2019 Confidential

Joins

Assuming 2 tables of sizes N and M rows, N < M.

Nested Loop:
• Worst case O(N*M)
• Usually a significantly small table + portion of an indexed larger table

Hash:
• Worst case O(N*hc + M*hm)
• Since hc and hm are typically independent of input, O(N+M)
• Either missing index, or joins very large portion of bigger table

Merge:
• Worst case O(N+M)
• Joined on equality only
• Both “node inputs” sorted on join key



14 — September 13, 2019 Confidential

Sequential Scans

Usually bad. This is usually a prime candidate for optimization.

Usually.

3 caveats:
• You need all the data from the table anyway

• You need so much data from the table that indices are just an overhead (~ >8%)
• Your table is so small that indices are an overhead



15 — September 13, 2019 Confidential

Bitmap Index and Heap Scans

1 part slower than a pure index scan.
1 part faster than a sequential scan.
98 parts full awesome.

Bitmap Index + Heap scan (OR):

Bitmap Heap scan (fetch optimization):




