= Microsoft

Scaling real-time analytics using Postgres in the cloud

Sai Krishna Srirampur
Colton Shepard

mailto:Sai.Srirampur@microsoft.com
mailto:Colton.Shepard@microsoft.com

Why PostgreSQL?

Proven Resilience and Stability

Thousands of Mission Critical Workloads

Open source

Large Developer Community and Extensible
Rich Feature Set: Solves multitude of use cases

Constraints Rich sQL
Extensions | CTEs

PostGIS / Geospatial . .
HLL, TopN, Citus Window functions

Foreign data wrappers Full text search

JISONB Datatypes

PostgreSQL is more popular than ever

g

One of the most loved and wanted
databases in Stack Overflow’s 2019
Developer Survey

Ranked 2018 DBMS of the Year
by DB-Engines

scale)

(logarithmic

Score

500

400

300

200

100

2013

DB-Engines’ ranking of PostgreSQL popularity

2014

© June 2019, DB-Engines.com

2015 2016

2017

2018

2019

https://insights.stackoverflow.com/survey/2019?utm_source=so-owned&utm_medium=blog&utm_campaign=dev-survey-2019&utm_content=launch-blog
https://db-engines.com/en/blog_post/76
https://db-engines.com/en/ranking_trend/system/PostgreSQL

The cloud only makes PostgreSQL better

More and more organizations are shifting open source workloads to
the cloud to benefit from key advantages:

* Improved manageability and security
* Improved performance and intelligence

* Global scalability

Azure Database for PostgreSQL

Azure Database for PostgreSQL is available in
two deployment options

ﬁ Single Server
Fully-managed, single-node PostgreSQL
- Example use cases

* Apps with JSON, geospatial support, or full-text search

* Transactional and operational analytics workloads
* Cloud-native apps built with modern frameworks

Hyperscale (Citus)

High-performance Postgres for scale out

Enterprise-ready, fully managed
. . . Example use cases
Commun|ty POStgreSQL Wlth bU||t‘ Scaling PostgreSQL multi-tenant, Saa$S apps

in HA and mU|ti-|aVGFEd security + Real-time operational analytics
 Building high throughput transactional apps

The benefits of Azure Database for PostgreSQL

Build or migrate your workloads with confidence

Fully managed
and secure

Focus on your apps while
Azure manages resource-
intensive tasks, supports a
large variety of Postgres
versions and provides best-
in industry indemnification
coverage

Intelligent performance
optimization

Improve performance
and reduce cost with customized
recommendations

Flexible and open

Stay productive with your
favorite Postgres extensions and
leverage Microsoft’s
contributions to the Postgres
community

Single Server

Hyperscale (Citus) NEW

.
ses

High performance scale-
out with Hyperscale
(Citus)

Break free from the limits of
single-node Postgres and
scale out across hundreds of
nodes

Real time Analytics

Scenario: Real-time Analytics

- You offer a product or service

which allows customers to run
reports and analytics queries on-
the fly on recent data.

- Examples:

network telemetry
clickstream analysis
loT

Marketing > My First Dashboard /

New Users by UTM source

Common requirements for Real-time analytics applications

A real-time application generally:

« Generates large amounts of data

« Has sub-second response times

« Supports large number of concurrent users
« Reflects new data within minutes

« Supports advanced analytics

Architecting Real-time Analytics with Postgres in
the cloud

Example Architecture for a real-time analytics application

WEB / MOBILE
APPLICATIONS
m
Power BI
DASHBOARDS

MysQL
PostgreSQL
Maria DB
0SS
DATABASES
ON AZURE

APACHE

ETL, BATCH,
STREAM
PROCESSING

HDInsight Spark
*
v
DATA LAKE
FILE SHARE

folo)

oy AZURE DATABRICKS il

—
| == |
EVENT
HUBS
APACHE
KAFKA

Streaming
Events

SERVING PRESENTATION
DATA SOURCE DATA INGEST PREPARE LAYER LAYER

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-

Typical Recipe for real-time analytics

- Ingest large volumes of data to a raw table
- Periodically aggregate events into a rollup table
- Have application query the rollup table

What is a rollup table?

Pre-computed aggregates for a period and set of (group by) dimensions.

Period | Customer | Country | Site Hit Count Page views on www.example.org in US

10000

7500

5000

- \/\/\/\/\/\/J\/\/—/\/

0
17:30 17:35 17:40 17:45 17:50 17:55

Page views per minute

Why Rollup tables?

- Fast (indexed) lookups of aggregates

- Compute-heavy work done periodically, in the background
- Rollups can be further aggregated

- Rollups are compact, can be kept over longer periods

- Advanced analytics using HLL, TopN

- Horizontal scale out using Citus

Typical Recipe for real-time analytics

- Ingest large volumes of data to a raw table
- Periodically aggregate events into a rollup table
- Have application query the rollup table

Schema for ingesting data into

CREATE TABLE events(
event _id bigserial,
event_time timestamptz default now(),
customer_id bigint,
event type text,
country text,
browser text,
device id bigint,
session_id bigint,
details jsonb

)5

Fast data loading - COPY

- COPY is the fastest way to bulk load data into Postgres

-+ With a few parallel streams, you can load millions of rows per second.

- Doesn’t need to be large batches.
- Can micro-batch in groups of 10s-100s of thousands of rows.

Best practices for data loading

- Use COPY
- Don’t use Indexes

But,
- You need indexes for querying that large table.

So,
» Avoid large indexes!

Ways to have small indexes

« Use one of the many index types Postgres supports as appropriate.

« Eg. BRIN — efficient block based indexing for sorted data.
« Small in size and bad for unsorted data, but tailor-made for range queries on time-based sorted data.

« Expire unneeded data to keep data and indexes small.
* Break up large table into smaller partitions.

« That way you need to scan only relevant portions of data and not the entire index for ingestion.

Expiring old data

DELETE FROM events WHERE event_time <="'2018-08-05’;

- |If you want to have a more informed delete, you can do:
DELETE FROM events WHERE event_time <= '2018-08-05" and not important;

Bloat and Fragmentation

- Selective deletes create gaps and bloat.
+ Autovacuum cleans them and new rows go into them.
- This leads to completely random rows and indexes — fragmentation

- Affects load performance
- Affects select performance

Partitioning
Keep your data sorted by bucketing it.

Partitioning keeps indexes small by dividing tables into partitions:

<
/2-
<
Benefits: <

* Drop old data quickly, without bloat/fragmentation
* Smaller indexes

* Partition pruning for queries that filter by partition column

COPY COPY

CREATE EXTENSION pg_ partman

Defining a partitioned table:
CREATE TABLE events (...) PARTITION BY (event time);
Setting up hourly partitioning with pg_partman:

SELECT partman.create parent('public.events'’,
‘event_time', 'native', 'hourly');

Now expiry becomes

- |f you're using partitioning, pg_partman can drop old partitions:

UPDATE partman.part _config
SET retention keep table = false, retention = '1 month'
WHERE parent table = 'public.events';

Periodically run maintenance:

SELECT partman.run_maintenance(p_analyze := false);

Typical Recipe for real-time analytics

- Ingest large volumes of data to a raw table
- Periodically aggregate events into a rollup table
- Have application query the rollup table

Typical Structure of Rollups

CREATE TABLE rollup by period and dimensions (

<period>
<dimensions>
<metrics>

primary key (<dimensions>,<period>)
)
Examples:
Period - 1min, 5min, 1lhour
Dimensions - customer id, device id, location, country

Metrics - View count, byte count, number of distinct
sessions

Choose granularity and dimensions

Time

Customer | Country Site

Aggregates

Time | Customer Country Aggregates
~100 rows per period/customer
Time | Customer | Site Aggregates

~20 rows per period/customer

~20*100=2000 rows per period/customer

Coarse-grained rollup for fast lookups

Coarse-grained rollup:

CREATE TABLE hits by country (

period timestamptz,

customer_id bigint,

country varchar(2),

num_hits bigint,

PRIMARY KEY (customer _id, country, period)
)

Look up records by primary key columns:

SELECT period, num_hits

FROM hits by country

WHERE customer_id = 1238 AND country = "US'
ORDER BY 1;

Fine-grained rollup for versatility

Fine-grained rollup:

CREATE TABLE hits by country site (

period timestamptz,

customer_id bigint,

country varchar(2),

site text,

num_hits bigint,

PRIMARY KEY (customer _id, country, site, period)
)

Sum across all sites:

SELECT period, sum(num_hits)

FROM hits by country site

WHERE customer_id = 1238 AND country = "US'
GROUP BY period ORDER BY 1;

Build coarse grained from fine grained rollups

Can build coarse-grained rollup from a fine-grained
rollup cheaply:

INSERT INTO hits by country daily

SELECT period::date, country, sum(num _hits)
FROM hits by country site

GROUP BY 1, 2;

Useful if you want to keep coarse-grained data for much
longer.

Summary: Designing rollups
Find balance between query performance and table management.

1. ldentify dimensions, metrics (aggregates)

2. Try rollup with all dimensions:

3. Test compression/performance (goal is >5x smaller)
4. If slow, split rollup table based on query patterns

5

. Goto 3

Usually ends up with 5-10 rollup tables

Computing rollups

Append only vs Incremental

Use INSERT INTO rollup SELECT ... FROM events ... to populate rollup table.

Append-only aggregation (insert):
Supports all aggregates, including exact distinct, percentiles
Harder to handle late data

Incremental aggregation (upsert):
Supports late data

Cannot handle all aggregates (though can approximate using HLL, TopN)

Append-only aggregation

Aggregate events for a particular time period and append them to the rollup
table, once all the data for the period is available.

INSERT INTO rollup

SELECT period, dimensions, aggregates
FROM events

WHERE event time::date = '2018-09-04'
GROUP BY period, dimensions;

» Should keep track of which periods have been aggregated.
« |f data comes late and has been rolled-up, you have to ignore it.

Incremental Aggregation
Aggregate new events and upsert into rollup table.

INSERT INTO rollup
SELECT period, dimensions, aggregates
FROM events
WHERE event id BETWEEN s AND e
GROUP BY period, dimensions
ON CONFLICT (dimensions, period) DO UPDATE
SET aggregates = aggregates + EXCLUDED.aggregates;

* Need to be able to incrementally build aggregates.
* Need to keep track of which events have been aggregated.

Keeping track of aggregated events

- Marking events as aggregated.

- Causes write amplification and bloat.

- Using a staging table

+ Changes to ingestion pipeline, and higher overhead.

- Tracking sequence number

- Recommended approach

Track sequence number

* Each event has a monotonically increasing sequence number i.
* Store sequence number S up to which all events were aggregated.

To aggregate:

* Draw a number from the sequence (E)

* Make sure there are no more in-flight transactions that are using
sequence numbers <= E (briefly block writes)

* Incrementally aggregate all events with sequence numbers S<i<=E

e SetS=E

Function to do transactional rollup

CREATE FUNCTION do_aggregation()
RETURNS void LANGUAGE plpgsql AS $function$
DECLARE
s bigint; e bigint;
BEGIN
-- Get and update the rollup window
SELECT * FROM safe_rollup window('rollup') INTO s, e;

INSERT INTO rollup SELECT period, dimensions, aggregates
FROM events WHERE event id BETWEEN s AND e
GROUP BY period, dimensions
ON CONFLICT (dimensions) DO UPDATE
SET aggregates = aggregates + EXCLUDED.aggregates;
END; $function$;

Advanced aggregations — HLL and TopN

Some metrics can’t be rolled up easily

- Number of distinct IP addresses to visit your website.

+ Top 10 IP addresses who have visited your website most.

+ Problems
- These metrics are slow to compute
- Can’t be used incrementally
* You cannot combine 1min rollups to produce 10min rollups

Solution: Use Approximations

- Data structures such as HLL and TopN

- Key properties:
-+ Requires very little memory and storage
- Merging them is commutative i.e. you can combine 5 min windows to 10 min ones
- Use them with incremental aggregates
- Doesn’t require centralized calculation in distributed systems

HLL

HyperLoglog starts by taking a hash of items counted:
hll hash text('54.33.98.12")

The hash function will produce a uniformly distributed bit string.
Unlikely patterns occurring indicates high cardinality.

Hash value with n 0-bits is observed - roughly 2" distinct items

HyperLoglLog divides values into m streams and averages the results.

HyperLoglLog

- Approximation algorithm to count number of unique elements in a list.
- Stores a data structure whose cardinality indicates the number of distinct elements in the list.

Process

- First, hash the elements — hll_hash(number)
- Add other elements to the list by using hll_add(hashvalue)
- Combine a large number of elements by using hll_add_agg(column)

- Distinct count estimate is as simple as hll_cardinality(hll)

- To combine hlls together just do hll_union_agg(hll)

Incremental Aggregation using HLL

Use hll add aggand hll union to doincremental rollups.

CREATE TABLE hourly rollup (
customer_id bigint not null,
period timestamptz not null,
unique_ips hll not null,

PRIMARY KEY (customer_id, period)

)5

INSERT INTO hourly rollup

SELECT customer_id, date_trunc('hour', created at), hll _add_agg(ip)
FROM page views

WHERE event _id BETWEEN start _id AND end id

GROUP BY 1, 2 ON CONFLICT (customer _id, period)

DO UPDATE SET unique_ips = hll union(unique_ips, EXCLUDED.unique_ips);

Dashboard queries with HLL

Use hll union_agg to merge HLL objects and hll cardinality to extract distinct count.

-- HLL
SELECT period::date, hll cardinality(hll union_agg(unique_ips)) AS uniques

FROM hourly rollup
WHERE customer_id = 1283 AND period >= now() - interval 'l week'

GROUP BY 1 ORDER BY 1;

period uniques
2018-08-29 14712
2018-08-30 33280

(; rows)

TopN

TopN keeps track of a set of counters (e.g. 1000) in JSONB with the explicit goal of determining the top N
(e.g. 10) most heavy hitters.

{
"184.31.49.1" : 1124712,

"22.203.1.77" : 28371,
"54.68.19.33" : 62183,

Merging TopN objects
Like HLL, TopN objects can be merged over time periods, dimensions.

topn_union(tnl,tn2)

{
"184.31.49.1" : 1124712, "184.31.49.1" : 3407,
"22.203.1.77" : 22,

"22.203.1.77" : 28371, +
"54.68.19.33" : 62183, "54.68.19.33" : 1,

Incremental aggregation using TopN

Use topn_add _agg and topn_union to do incremental rollups.

CREATE TABLE heavy hitters _hour (
customer_id bigint not null,
period timestamptz not null,
top_ips jsonb not null,

PRIMARY KEY (customer_id, period)

)5

INSERT INTO heavy hitters hours

SELECT customer_id, date_trunc('hour', created at), topn_add agg(ip)
FROM page views

WHERE event _id BETWEEN start _id AND end id

GROUP BY 1, 2 ON CONFLICT (customer _id, period)

DO UPDATE SET top_ips = topn_union(top ips, EXCLUDED.top ips);

Dashboard queries with TopN

Use topn_union_agg to merge TopN objects, topn to extract top N counts.

-- Topn

SELECT (topn(topn_union_agg(top ips), 10)).*

FROM heavy hitters hour

WHERE customer_id = 1283 AND period >= now() - interval 'l day';

item frequency
184.31.49.1 1124712
54.68.19.33 62183
(10 rows)

Cheap index look-up with aggregation across 24 rows.

Recipe for real-time analytics

- Ingest large volumes of data to a raw table

- Periodically aggregate events into a rollup table
- Have application query the rollup table

- Automate all of this with pg_cron

Automate jobs with pg cron

- PostgreSQL extension which allows you to run cron within the database

- Makes it easy to schedule jobs without requiring external tools

Example: Delete old data at midnight using pg_cron:

SELECT cron.schedule('0 @ * * *' ¢¢

DELETE FROM events

WHERE event time < date trunc('day', now() -
interval '1 week')

$$);

Periodic aggregation using pg_cron

Run aggregation every 5 minutes:

SELECT cron.schedule('*/5 * * *x *' = ¢4
SELECT do_aggregation()

$$);

Scale out using Hyperscale (Citus)

Architecture

Shard your PostgreSQL database across multiple
nodes to give your application more memory,
compute, and disk storage

Easily add worker nodes to achieve horizontal scale,
while being able to deliver parallelism even within
each node

Scale out to 100s of nodes

Select from table Coordinator

[
»

Table metadata

Each node PostgreSQL with
Citus installed

1 shard = 1 Postgre SQL table

Select from table_1001

Select from table_1003

v

Select from table_1002

v

Select from table_1004

v

v

vVVyvyvYyy

Data node 1

[l Table_1001
B Table_1003

Data node 2

B Table_1002
M Table_1004

Data node N

Scaling with Hyperscale (Citus)

- All of this was for one node

- With Hyperscale (Citus), you can scale this entire pipeline to 10s-100s of
nodes

- To distribute, run:
SELECT create_distributed table('events', 'customer_id');

Multi-tenancy and colocation

Tenant ID provides a natural sharding dimension for many applications.
Citus automatically co-locates event and rollup data for the same

SELECT create_distributed table('events', 'tenant_id');
SELECT create_distributed table('rollup', 'tenant_id');

Aggregations can be done locally, without network traffic:

INSERT INTO rollup SELECT tenant_id, .. FROM events ..
Dashboard queries are always for a particular tenant:

SELECT .. FROM rollup WHERE tenant _id = 1238 ..
Or are parallelized when you want to compare tenants:

SELECT tenant_id,.. FROM rollup GROUP BY tenant_id ..

Benefits of Hyperscale (Citus)

Horizontally scale out a real-time analytics pipeline:

* High throughput COPY
 Parallel INSERT..SELECT, DELETE, SELECT, autovacuum
* Low-latency queries on rollup for a particular customer

In general:
« Can always have enough capacity (memory, storage, CPU) to meet

performance goals
« Smaller tables, indexes through sharding (+ partitioning)

Data loading

- COPY asynchronously scatters rows to different shards

or

el

Aggregation and rollups

INSERT ... SELECT can be parallelised across shards

Coordinator

- INSERT INTO rollup

SELECT .. FROM events

BEEE | o o
INSERT INTO rollup 102180 g';i’ig IN:go,;OlluP{miég;l@
SELECT .. FROM events_102008 iy events_

GROUP BY .. = =

Querying rollups

SELECT on rollup for a particular customer (from the dashboard) can be
routed to the appropriate shard.

Coordinator

- SELECT .. FROM rollup
- WHERE tenant_id = 12834 ..

SELECT .. FROM events_ 102180
WHERE tenant_id = 1283 ..

Querying across tenants

SELECT queries across tenants can be parallelized across shards

Coordinator

SELECT tenant id EROM SELECT tenant_id,.. FROM
1lup 102180 EROL’J"P' BY rollup 102182 GROUP BY
ros up_ tenant_id ..

tenant_id ..

SELECT tenant_id,.. FROM
rollup GROUP BY tenant_id ..

Summary

To build a real-time application which

« Generates large amounts of data

» Has sub-second response times

« Supports large number of concurrent users
« Reflects new data within minutes

« Supports advanced analytics

You should use:

* Azure Database for PostgreSQL as your database engine

 COPY to load raw data into a table

* BRIN index to find new events during aggregation

* Ordered deletion or partitioning with pg_partman to expire old data
* Rollup tables built from raw event data

* Incremental aggregation if you can have late data

* HLL to incrementally approximate distinct count

* TopN to incrementally approximate heavy hitters

* Hyperscale (Citus) to scale out

Hands on Lab

Scenario: You = Cloud services provider helping businesses
monitor their HTTP traffic

- Every time one of your clients receives an HTTP request, your service
receives a log record.

- You want to ingest all records & create an HTTP operational analytics
dashboard to give your clients insight, such as the number of HTTP errors
their sites served.

- Fast queries (low latency) as there is a dashboard and real-time (at least
minutely)

- Queries could be for analyzing multiple sites at once (OR) a single site at
once.

http://tinyurl.com/yxreau?d

* Write down session id *

Instructions link

(if browser issues — disable popup blocker, try incognito)

http://tinyurl.com/yxreau7d
https://facilitatorresources.blob.core.windows.net/parature/generalresources/02~Booking%20and%20Login%20Instructions/How%20to%20use%20the%20TinyURL%20(updated%20Feb%202%202018).pdf

Setup (page 1 to page 4)

- Read Scenario (IMPORTANT)

- Login to Azure Portal using your credentials
+ Setup Cloud Shell

- Checkout Hyperscale(Citus) cluster

- Setup Firewall

- Test connecting to Hyperscale(Citus) cluster

Please pause at page 4

Design and Implementation (page 5 to page 9)

- Data model — table design and sharding

- Querying raw data

+ Introducing Rollups

- Data Expiration

- Implementing HLL for Approximate Distinct Counts in Rollups

+ Unstructured data with jsonb in Rollups

Thank You
Q&A

Sai Krishna Srirampur
Colton Shepard

