
Scaling real-time analytics using Postgres in the cloud
Sai.Srirampur@microsoft.com

Colton.Shepard@microsoft.com

mailto:Sai.Srirampur@microsoft.com
mailto:Colton.Shepard@microsoft.com

Why PostgreSQL?

Proven Resilience and Stability
Thousands of Mission Critical Workloads
Open source
Large Developer Community and Extensible
Rich Feature Set: Solves multitude of use cases
Constraints
Extensions
PostGIS / Geospatial
HLL, TopN, Citus
Foreign data wrappers
JSONB

Rich SQL
CTEs
Window functions
Full text search
Datatypes

PostgreSQL is more popular than ever

loved wanted

https://insights.stackoverflow.com/survey/2019?utm_source=so-owned&utm_medium=blog&utm_campaign=dev-survey-2019&utm_content=launch-blog
https://db-engines.com/en/blog_post/76
https://db-engines.com/en/ranking_trend/system/PostgreSQL

DBMS of the Year

DB-Engines’ ranking of PostgreSQL popularity

PostgreSQL is more popular than ever

https://insights.stackoverflow.com/survey/2019?utm_source=so-owned&utm_medium=blog&utm_campaign=dev-survey-2019&utm_content=launch-blog
https://db-engines.com/en/blog_post/76
https://db-engines.com/en/ranking_trend/system/PostgreSQL

More and more organizations are shifting open source workloads to
the cloud to benefit from key advantages:

• Improved manageability and security

• Improved performance and intelligence

• Global scalability

The cloud only makes PostgreSQL better

Azure Database for PostgreSQL

Azure Database for PostgreSQL is available in
two deployment options

Single Server
Fully-managed, single-node PostgreSQL

Example use cases
• Apps with JSON, geospatial support, or full-text search

• Transactional and operational analytics workloads

• Cloud-native apps built with modern frameworks

Hyperscale (Citus)
High-performance Postgres for scale out

Example use cases
• Scaling PostgreSQL multi-tenant, SaaS apps

• Real-time operational analytics

• Building high throughput transactional apps

Enterprise-ready, fully managed
community PostgreSQL with built-
in HA and multi-layered security

High performance scale-
out with Hyperscale
(Citus)

The benefits of Azure Database for PostgreSQL

Intelligent performance
optimization

Flexible and openFully managed
and secure

Single Server

Hyperscale (Citus) NEW

Build or migrate your workloads with confidence

Real time Analytics

Scenario: Real-time Analytics

Common requirements for Real-time analytics applications

Architecting Real-time Analytics with Postgres in
the cloud

Example Architecture for a real-time analytics application

Typical Recipe for real-time analytics

What is a rollup table?

Period Customer Country Site Hit Count

Why Rollup tables?

Typical Recipe for real-time analytics

� Ingest large volumes of data to a raw table

Schema for ingesting data into

CREATE TABLE events(
event_id bigserial,
event_time timestamptz default now(),
customer_id bigint,
event_type text,
country text,
browser text,
device_id bigint,
session_id bigint,
details jsonb

);

Fast data loading - COPY

Best practices for data loading

Ways to have small indexes

Expiring old data

Bloat and Fragmentation

Partitioning
Keep your data sorted by bucketing it.

COPY COPY

CREATE EXTENSION pg_partman

Now expiry becomes

Typical Recipe for real-time analytics

� Ingest large volumes of data to a raw table
� Periodically aggregate events into a rollup table
� Have application query the rollup table

Typical Structure of Rollups

Choose granularity and dimensions

Time Customer Country Aggregates

Time Customer Site Aggregates

Time Customer Country Site Aggregates
~100 rows per period/customer

~20 rows per period/customer

~20*100=2000 rows per period/customer

Coarse-grained rollup for fast lookups

Look up records by primary key columns:

hits_by_country

Fine-grained rollup for versatility

Sum across all sites:

hits_by_country_site

Build coarse grained from fine grained rollups

rollup

hits_by_country_site

Useful if you want to keep coarse-grained data for much
longer.

Summary: Designing rollups

1.
2.
3.
4.
5.

Computing rollups

Append only vs Incremental

Append-only aggregation

period,

Incremental Aggregation

Keeping track of aggregated events

Track sequence number

S
S

Function to do transactional rollup

CREATE FUNCTION do_aggregation()
RETURNS void LANGUAGE plpgsql AS $function$
DECLARE

s bigint; e bigint;
BEGIN

-- Get and update the rollup window
SELECT * FROM safe_rollup_window('rollup') INTO s, e;

INSERT INTO rollup SELECT period, dimensions, aggregates
FROM events WHERE event_id BETWEEN s AND e
GROUP BY period, dimensions
ON CONFLICT (dimensions) DO UPDATE
SET aggregates = aggregates + EXCLUDED.aggregates;

END; $function$;

Advanced aggregations – HLL and TopN

Some metrics can’t be rolled up easily

Solution: Use Approximations

HLL

HyperLogLog starts by taking a hash of items counted:
hll_hash_text('54.33.98.12')

The hash function will produce a uniformly distributed bit string.
Unlikely patterns occurring indicates high cardinality.

Hash value with n 0-bits is observed → roughly 2n distinct items

HyperLogLog divides values into m streams and averages the results.

HyperLogLog

Process

Incremental Aggregation using HLL

Use hll_add_agg and hll_union to do incremental rollups.

CREATE TABLE hourly_rollup (
customer_id bigint not null,
period timestamptz not null,
unique_ips hll not null,
PRIMARY KEY (customer_id, period)

);

INSERT INTO hourly_rollup
SELECT customer_id, date_trunc('hour', created_at), hll_add_agg(ip)
FROM page_views
WHERE event_id BETWEEN start_id AND end_id
GROUP BY 1, 2 ON CONFLICT (customer_id, period)
DO UPDATE SET unique_ips = hll_union(unique_ips, EXCLUDED.unique_ips);

Dashboard queries with HLL

Use hll_union_agg to merge HLL objects and hll_cardinality to extract distinct count.

-- HLL
SELECT period::date, hll_cardinality(hll_union_agg(unique_ips)) AS uniques
FROM hourly_rollup
WHERE customer_id = 1283 AND period >= now() - interval '1 week'
GROUP BY 1 ORDER BY 1;

period │ uniques
────────────┼─────────
2018-08-29 │ 14712
2018-08-30 │ 33280
…

(7 rows)

TopN

TopN keeps track of a set of counters (e.g. 1000) in JSONB with the explicit goal of determining the top N
(e.g. 10) most heavy hitters.

{
"184.31.49.1" : 1124712,
"22.203.1.77" : 28371,
"54.68.19.33" : 62183,
…

}

Merging TopN objects

Like HLL, TopN objects can be merged over time periods, dimensions.

topn_union(tn1,tn2)

{ {
"184.31.49.1" : 1124712, "184.31.49.1" : 3407,
"22.203.1.77" : 28371, + "22.203.1.77" : 22,
"54.68.19.33" : 62183, "54.68.19.33" : 1,
… …

} }

Incremental aggregation using TopN

Use topn_add_agg and topn_union to do incremental rollups.

CREATE TABLE heavy_hitters_hour (
customer_id bigint not null,
period timestamptz not null,
top_ips jsonb not null,
PRIMARY KEY (customer_id, period)

);

INSERT INTO heavy_hitters_hours
SELECT customer_id, date_trunc('hour', created_at), topn_add_agg(ip)
FROM page_views
WHERE event_id BETWEEN start_id AND end_id
GROUP BY 1, 2 ON CONFLICT (customer_id, period)
DO UPDATE SET top_ips = topn_union(top_ips, EXCLUDED.top_ips);

Dashboard queries with TopN

Use topn_union_agg to merge TopN objects, topn to extract top N counts.

-- Topn
SELECT (topn(topn_union_agg(top_ips), 10)).*
FROM heavy_hitters_hour
WHERE customer_id = 1283 AND period >= now() - interval '1 day';

item │ frequency
─────────────┼───────────
184.31.49.1 │ 1124712
54.68.19.33 │ 62183
…

(10 rows)

Cheap index look-up with aggregation across 24 rows.

Recipe for real-time analytics

� Ingest large volumes of data to a raw table
� Periodically aggregate events into a rollup table
� Have application query the rollup table
� Automate all of this with pg_cron

Automate jobs with pg_cron

� PostgreSQL extension which allows you to run cron within the database
� Makes it easy to schedule jobs without requiring external tools

Example: Delete old data at midnight using pg_cron:

SELECT cron.schedule('0 0 * * *', $$
DELETE FROM events
WHERE event_time < date_trunc('day', now() -

interval '1 week')
$$);

Periodic aggregation using pg_cron

Run aggregation every 5 minutes:

SELECT cron.schedule('*/5 * * * *', $$
SELECT do_aggregation()

$$);

Scale out using Hyperscale (Citus)

Architecture

Shard your PostgreSQL database across multiple
nodes to give your application more memory,
compute, and disk storage

Easily add worker nodes to achieve horizontal scale,
while being able to deliver parallelism even within
each node

Scale out to 100s of nodes

Coordinator
Table metadata

Each node PostgreSQL with
Citus installed
1 shard = 1 Postgre SQL table

Scaling with Hyperscale (Citus)

� SELECT create_distributed_table('events', 'customer_id');

Multi-tenancy and colocation

Tenant ID provides a natural sharding dimension for many applications.

Citus automatically co-locates event and rollup data for the same

SELECT create_distributed_table('events', 'tenant_id');
SELECT create_distributed_table('rollup', 'tenant_id');

Aggregations can be done locally, without network traffic:

INSERT INTO rollup SELECT tenant_id, … FROM events …

Dashboard queries are always for a particular tenant:

SELECT … FROM rollup WHERE tenant_id = 1238 …

Or are parallelized when you want to compare tenants:

SELECT tenant_id,… FROM rollup GROUP BY tenant_id …

Benefits of Hyperscale (Citus)

Data loading

Coordinator

COPYevents

Aggregation and rollups

Coordinator

events INSERT INTO rollup
SELECT … FROM events
GROUP BY … rollup

INSERT INTO rollup_102182
SELECT … FROM events_102010
GROUP BY …

INSERT INTO rollup_102180
SELECT … FROM events_102008
GROUP BY …

Querying rollups

Coordinator

events SELECT … FROM rollup
WHERE tenant_id = 12834 …
… rollup

SELECT … FROM events_102180
WHERE tenant_id = 1283 …
…

Querying across tenants

Coordinator

SELECT tenant_id,… FROM
rollup GROUP BY tenant_id …

rollup

SELECT tenant_id,… FROM
rollup_102182 GROUP BY
tenant_id …

SELECT tenant_id,… FROM
rollup_102180 GROUP BY
tenant_id …

Summary

To build a real-time application which

You should use:

•
•
•
•
•
•
•
•
•

Hands on Lab

Scenario: You = Cloud services provider helping businesses
monitor their HTTP traffic

http://tinyurl.com/yxreau7d

* Write down session id *

Instructions link

(if browser issues – disable popup blocker, try incognito)

http://tinyurl.com/yxreau7d
https://facilitatorresources.blob.core.windows.net/parature/generalresources/02~Booking%20and%20Login%20Instructions/How%20to%20use%20the%20TinyURL%20(updated%20Feb%202%202018).pdf

Setup (page 1 to page 4)

Design and Implementation (page 5 to page 9)

Thank You
Q&A

